Discrete POWER & Signal Technologies ## 1N4150 / FDLL4150 LL-34 THE PLACEMENT OF THE EXPANSION GAP HAS NO RELATIONSHIP TO THE LOCATION OF THE CATHODE TERMINAL **COLOR BAND MARKING** DEVICE 1ST BAND 2ND BAND FDLL4150 BLACK ORANGE ## **High Conductance Ultra Fast Diode** Sourced from Process 1R. See MMBD1201-1205 for characteristics. ## **Absolute Maximum Ratings*** TA = 25°C unless otherwise noted | Symbol | Parameter | Value | Units | |------------------|---|-------------|--------| | W _{IV} | Working Inverse Voltage | 50 | V | | Io | Average Rectified Current | 200 | mA | | I _F | DC Forward Current | 400 | mA | | İf | Recurrent Peak Forward Current | 600 | mA | | İf(surge) | Peak Forward Surge Current Pulse width = 1.0 second Pulse width = 1.0 microsecond | 1.0
4.0 | A
A | | T _{stg} | Storage Temperature Range | -65 to +200 | °C | | T _J | Operating Junction Temperature | 175 | °C | ^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired. - NOTES: 1) These ratings are based on a maximum junction temperature of 200 degrees C. - 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations. ### **Thermal Characteristics** TA = 25°C unless otherwise noted | Symbol | Characteristic Max | | Units | | |-----------------|---|----------------|-------|--| | | | 1N / FDLL 4150 | | | | P _D | Total Device Dissipation | 500 | mW | | | | Derate above 25°C | 3.33 | mW/°C | | | $R_{\theta JA}$ | Thermal Resistance, Junction to Ambient | 300 | °C/W | | # High Conductance Ultra Fast Diode (continued) ## **Electrical Characteristics** TA = 25°C unless otherwise noted | Symbol | Parameter | Test Conditions | Min | Max | Units | |-----------------|-----------------------|--|----------------------------------|---------------------------------|----------------------| | B _V | Breakdown Voltage | $I_R = 5.0 \mu\text{A}$ | 75 | | V | | I _R | Reverse Current | V _R = 50 V
V _R = 50 V, T _A = 150°C | | 100
100 | nA
μA | | V _F | Forward Voltage | $I_{F} = 1.0 \text{ mA}$ $I_{F} = 10 \text{ mA}$ $I_{F} = 50 \text{ mA}$ $I_{F} = 100 \text{ mA}$ $I_{F} = 200 \text{ mA}$ | 540
660
760
820
0.87 | 620
740
860
920
1.0 | mV
mV
mV
mV | | Co | Diode Capacitance | $V_R = 0, f = 1.0 \text{ MHz}$ | | 2.5 | pF | | T _{RR} | Reverse Recovery Time | $I_F = I_R = 10 \text{ mA-200 mA}, R_L = 100\Omega$
$I_F = I_R = 200 \text{ mA-400 mA}, R_L = 100\Omega$ | | 4.0
6.0 | nS
nS | | T_FR | Forward Recovery Time | $I_F = 200 \text{ mA}, V_{FR} = 1.0 \text{ V}$ | | 10 | nS |