ДомойСтатьиЖурналыСхемыСправочникСсылки
Техника наших дней
[Содержание номера] [Содержание года] [Архив] [Статьи]
Современная радиолокация


Ю. КУЗНЕЦОВ, генеральный конструктор ВНИИРТ
Давно известная радиолокация ныне предстает перед нами совершенно в новом свете, если даже в общих чертах познакомиться с ее последними достижениями. Современному ее состоянию, перспективам и посвящена публикуемая обзорная статья.

В наше время радиолокация получила широчайшее применение. Ее методы и средства используются для обнаружения объектов и контроля обстановки в воздушном, космическом, наземном и надводном пространствах. Современная техника позволяет с большой точностью измерять координаты положения самолета или ракеты, следить за их движением, определять не только формы объектов, но и структуру их поверхности. Радиолокационные методы открывают возможность изучать недра Земли и даже внутренние неоднородности поверхностных слоев на других планетах. Но если говорить о чисто "земных делах" - гражданском и военном применении радиолокации, то ее методы незаменимы, например, в организации управления воздушным движением, наведении, распознавании объектов, определении их принадлежности.

В зависимости от конкретного назначения современные радиолокационные станции (РЛС) имеют характерные особенности. Из всего их разнообразия значительную долю составляют РЛС обнаружения. Связано это с тем, что радиолокационный метод обнаружения является основным как на Земле, в воздухе, на море, так и в космосе.

С помощью радиолокации производится так называемая пространственная селекция - обнаружение объекта по отраженному сигналу, временная селекция, когда по задержке возвращения отраженного сигнала устанавливается дальность до цели. Существует еще понятие частотная селекция, позволяющая отслеживать по изменению частотного спектра сигнала радиальную скорость наблюда емого объекта.

Современные РЛС, как правило, трехкоординатные. Они определяют дальность, угол места и азимут. При этом применяются антенны, имеющие узкие диаграммы направленности в вертикальной и горизонтальной плоскостях. Чтобы обеспечить заданные точности определения угловых координат и не увеличивать время обзора, применяется метод параллельно-последовательного обзора пространства, когда одновременно используется несколько лучей, а зона перекрывается последовательным перемещением этих лучей, что позволяет сократить количество приемных каналов.

Каким же образом можно избежать мешающих отражений от местных предметов и неоднородностей в атмосфере? Здесь, в арсенале радиолокации, - режим селекции по частоте. Его суть состоит в том, что движущийся относительно РЛС объект отражает сигнал со сдвигом по частоте (эффект Доплера). Если этот сдвиг составляет даже всего 10E-7 от значений несущей частоты, то современные методы обработки выделят разницу и радиолокатор "увидит" цель. Это обеспечивается благодаря поддержанию необходимой стабильности сигналов или, как говорят специалисты радиолокации, сохранению их когерентности.

Это важно, например, потому, что объекты, вызывающие мешающие отражения, часто не являются неподвижными (раскачиваются деревья, наблюдается волнение по водной поверхности, перемещаются облака и т. п.). Такие отраженные сигналы также имеют сдвиг по частоте. Чтобы расширить возможности РЛС, применяют различные режимы работы станций и их сочетания. При амплитудном режиме удается добиться большей дальности действия РЛС и определять цели, движущиеся с нулевой радиальной скоростью. Такой метод обычно используется для обзора в дальней зоне, где нет мешающих отражений. Когерентный режим применяют в ближней зоне обзора, где много мешающих отражений.

Для снижения пиковой мощности передатчиков РЛС используются сложные сигналы, которые обеспечивают достаточную точность и разрешающую способность. При этом приходится усложнять аппаратуру. Однако в данном случае компромисс вполне оправдан, так как позволяет обеспечить требуемую дальность обнаружения и не иметь высокого значения пиковой мощности.

Во многих современных РЛС используются фазированные антенные решетки (ФАР), в том числе активного типа, в каждую ячейку которых встроены свой передатчик и входные цепи приемника. Это, конечно, усложняет конструкцию станции и ее обслуживание, однако позволяет снизить потери при передаче и приеме, повысить возможность работы станции в сложной обстановке, в том числе в условиях искусственных помех. Вместе с тем включение в ФАР приемопередатчиков - один из важных способов повышения надежности РЛС. Даже при выходе из строя нескольких модулей передатчиков и приемников РЛС продолжает работать.


Рис.1. Мобильная РЛС кругового обзора с фазированной антенной решеткой
Рис.1. Мобильная РЛС кругового обзора с фазированной антенной решеткой - 13880 байт
Непременным качеством современных РЛС является сохранение в течение достаточно длительного времени и в разных погодных условиях стабильности функционирования приемной аппаратуры. Такую задачу помогло решить внедрение в радиолокацию устройств цифровой обработки сигналов.

Важным требованием к современным РЛС обнаружения является их мобильность. Они рассчитаны на движение своим ходом по различным дорогам. На их свертывание и развертывание уходит от 5 до 15 минут. Здесь конструкторам пришлось пойти на резкое ограничение массы и габаритов РЛС. Решить эту задачу во многом удалось без ухудшения основных параметров по дальности, точности, зоне обзора, темпу обзора и т.д.

Как выглядит современная радиолокационная станция обнаружения? Одним из ее главных элементов стала фазированная антенная решетка (рис.1). Она вращается и формирует обычно несколько лучей на прием и один луч на передачу. Принимаемые сигналы усиливаются, а затем преобразуются в цифровую форму. Дальнейшая обработка информации идет в цифровом виде с помощью элементов вычислительной техники. РЛС фактически в автоматическом режиме обнаруживает цели, измеряет координаты, определяет параметры трассы движения.

Оператор почти полностью освобожден от рутинной работы. Его функции состоят в том, чтобы в необходимых случаях выбрать требуемый режим работы РЛС, т.е. помочь в ее адаптации к обстановке и поддерживать работоспособность РЛС.

Несмотря на общие закономерности построения радиолокационных станций по своему назначению, они весьма разнообразны. Например, современные РЛС обнаружения бывают большой, средней, малой дальности; двух- и трехкоординатные; мобильные, подвижные, стационарные и, наконец, для обнаружения на малых и на больших высотах.

Что вкладывают создатели радиолокационных систем в понятие "современная РЛС"? Во многом оно оценивается критерием "эффективность-стоимость" и может быть выражено отношением, в числителе которого - обобщенные тактико-техническая характеристика станции, а в знаменателе - ее стоимость. При такой оценке упрощенные РЛС будут иметь невысокий показатель за счет малого числителя, а переусложненные - невысокий показатель за счет большого знаменателя. Оптимальное отношение для современных РЛС соответствует определенной совокупности примененных при ее создании научно-технических достижений, которые позволяют повысить ее возможности, причем достижений, технологически освоенных в производстве и поэтому приемлемых в экономическом плане. И наконец, понятие "современная РЛС" еще совсем необязательно означает, что она имеет по всем параметрам лучшие показатели, достигнутые мировой радиолокационной техникой. В каждую конструкцию станции должен включаться такой набор технических новинок, который наилучшим образом позволил бы ей обеспечить требуемую совокупность характеристик.

Вместе с тем необходимо подчеркнуть, что при функциональной схожести и многоотраслевом характере современных РЛС они, как правило, значительно отличаются друг от друга. В РЛС обнаружения, в зависимости от их назначения, применяются антенны от единиц до сотен квадратных метров, средняя излучаемая мощность составляет от сотен ватт до единиц мегаватт.
Рис.2. Трехкоординатная РЛС кругового обзора метрового диапазона - 29436 байт Рис.3. Мобильная автоматизированная РЛС обнаружения низколетящих целей - 10108 байт
Рис.2. Трехкоординатная РЛС кругового обзора метрового диапазона Рис.3. Мобильная автоматизированная РЛС обнаружения низколетящих целей


Естественно, проблемы совершенствования радиолокационных систем сегодня решаются на базе последних достижений механики, электромеханики, энергетики, радиоэлектроники, вычислительной техники и т.д. Все это говорит о том, что создание современных РЛС является сложной научно-технической и инженерной задачей.

Среди радиолокационной техники, которая появилась в последнее время, особенно выделяются своей надежностью и высокими функциональными характеристиками радиолокаторы военного назначения. К ним можно отнести РЛС для обнаружения средств нападения, многие из которых характеризуются малой отражающей поверхностью, выполненной по так называемой технологии "Стелс" ("Невидимка"). Нападение осуществляется на фоне искусственных активных и пассивных помех радиолокационному обнаружению. При этом атаке подвергается и сама РЛС: по сигналам, которые она излучает, на нее наводятся противорадиолокационные ракеты (ПРР). Естественно поэтому, что радиолокационный комплекс, решая свои основные боевые задачи, должен иметь и средства защиты от ПРР.

Отечественная радиолокация добилась заметных успехов. Ряд созданных в России радиолокационных систем является нашим национальным достоянием и находится на уровне мировых. К их числу вполне можно отнести РЛС метрового диапазона волн, в том числе трехкоординатные станции.

Очевидно, более подробно стоит познакомиться с возможностями одной из новых наших трехкоординатных станций кругового обзора, работающей в метровом диапазоне (рис.2). Она выдает информацию о местонахождении объекта в виде трех координат: по азимуту - 360°, по дальности на расстоянии до 1200 км и по высоте - до 75 км.

Преимущества таких станций, с одной стороны, - неуязвимость для снарядов самонаведения и противолокационных ракет, обычно использующих более коротковолновые диапазоны, а с другой - способность обнаруживать самолеты "Невидимки". Ведь одна из причин "невидимости" этих объектов - их специальная форма, имеющая малое обратное отражение. В метровом диапазоне эта причина исчезает, так как размеры самолета сравнимы с длиной волны и его форма уже не играет решающей роли. Невозможно также, не ухудшая аэродинамику, покрыть самолет достаточным слоем радиопоглощающего материала. Несмотря на то что для работы в этом диапазоне требуются антенны больших габаритов, что станции имеют некоторые другие недостатки, указанные преимущества РЛС метрового диапазона предопределили их развитие и растущий интерес к ним во всем мире.

Несомненным достижением отечественной радиолокации можно назвать работающие в дециметровом диапазоне волн РЛС для обнаружения целей, летящих на малых высотах (рис.3). Такая станция на фоне интенсивных отражений от местных предметов и метеообразований способна обнаружить цели на малых и предельно малых высотах и сопровождать вертолеты, самолеты, дистанционно пилотируемые аппараты, крылатые ракеты. В автоматическом режиме она определяет дальность, азимут, эшелон высоты и трассу. Вся информация может быть передана по радиоканалу на расстояние до 50 км. Характерной особенностью станций, о которых идет речь, является их высокая мобильность (малое время развертывания и свертывания) и возможность простым способом подъема антенн на высоту 50 м, т.е. над любой растительностью.

Эти и подобные им РЛС по многим своим характеристикам не имеют аналогов в мире.

Читателей журнала "Радио", наверное, интересует, в каком направлении идет развитие РЛС, какими они будут в ближайшем будущем? Прогнозируется, что будут создаваться, как и прежде, станции самого разного назначения и уровня сложности. Наиболее сложными будут трехкоординатные РЛС. Их общими чертами останутся принципы, заложенные в современных трехкоординатных системах кругового (или секторного) обзора. Главными их функциональными частями станут активные твердотельные (полупроводниковые) фазированные антенные решетки. Уже в ФАР осуществится преобразование сигнала в цифровую форму.

Особое место в РЛС займет вычислительный комплекс. Он возьмет на себя все основные функции работы станции: обнаружение целей, определение их координат, а также управление станцией, включая ее адаптацию к помеховой обстановке, контроль за параметрами станции, проведение ее диагностики.

И это не все. Вычислительный комплекс обобщит полученные данные, установит связь с потребителем и передаст ему полную информацию в готовом виде.

Сегодняшние достижения науки и техники позволяют прогнозировать именно такой облик РЛС ближайшего будущего. Однако считается сомнительной возможность создания универсального локатора, способного решать все задачи обнаружения. Акцент делается на комплексы разных РЛС, объединенных в систему обнаружения.

При этом получит развитие нетрадиционное построение систем - многопозиционные радиолокационные комплексы, в том числе пассивные и активнопассивные, скрытые от разведки.

© Радио, №10, 1995 г.


Официальный сайт журнала

ДомойСтатьиЖурналыСхемыСправочникСсылки
AK Laboratory, 2000г.