Dual Picoampere Input Current Bipolar Op Amp

FEATURES

HIGH DC PRECISION
$50 \mu \mathrm{~V}$ max Offset Voltage
$0.6 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max Offset Drift
110 pA max Input Bias Current
LOW NOISE
$0.5 \mu \mathrm{~V}$ p-p Voltage Noise, 0.1 Hz to 10 Hz
LOW POWER
750μ A Supply Current
Available in 8-Pin Plastic Mini-DIP, Hermetic Cerdip and Surface Mount (SOIC) Packages
Available in Tape and Reel in Accordance with EIA-481A Standard
Single Version: AD705, Quad Version: AD704
\section*{PRIMARY APPLICATIONS}
Low Frequency Active Filters
Precision Instrumentation
Precision Integrators

PRODUCT DESCRIPTION

The AD706 is a dual, low power, bipolar op amp that has the low input bias current of a BiFET amplifier but which offers a significantly lower I_{B} drift over temperature. It utilizes superbeta bipolar input transistors to achieve picoampere input bias current levels (similar to FET input amplifiers at room temperature), while its I_{B} typically only increases by $5 \times$ at $125^{\circ} \mathrm{C}$ (unlike a BiFET amp, for which I_{B} doubles every $10^{\circ} \mathrm{C}$ for a $1000 \times$ increase at $125^{\circ} \mathrm{C}$). The AD706 also achieves the microvolt offset voltage and low noise characteristics of a precision bipolar input amplifier.
Since it has only $1 / 20$ the input bias current of an OP07, the AD706 does not require the commonly used "balancing" resistor. Furthermore, the current noise is $1 / 5$ that of the OP07 which makes this amplifier usable with much higher source impedances. At $1 / 6$ the supply current (per amplifier) of the OP07, the AD706 is better suited for today's higher density boards.
The AD706 is an excellent choice for use in low frequency active filters in 12- and 14-bit data acquisition systems, in precision instrumentation, and as a high quality integrator. The AD706 is internally compensated for unity gain and is available in five performance grades. The AD706J and AD706K are rated over the commercial temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. The AD 706 A and AD 706 B are rated over the industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

REV. B

CONNECTION DIAGRAM

Plastic Mini-DIP (N)
Cerdip (Q) and
Plastic SOIC (R) Packages

The AD706 is offered in three varieties of an 8-pin package: plastic mini-DIP, hermetic cerdip and surface mount (SOIC). "J" grade chips are also available.

PRODUCT HIGHLIGHTS

1. The AD706 is a dual low drift op amp that offers BiFET level input bias currents, yet has the low I_{B} drift of a bipolar amplifier. It may be used in circuits using dual op amps such as the LT1024.
2. The AD706 provides both low drift and high dc precision.
3. The AD706 can be used in applications where a chopper amplifier would normally be required but without the chopper's inherent noise.

Parameter	Conditions	AD706J/A			AD706K/B			Units		
		Min	Typ	Max	Min	Typ	Max			
INPUT OFFSET VOLTAGE Initial Offset Offset vs. Temp, Average TC vs. Supply (PSRR) $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ Long Term Stability	$\mathrm{T}_{\mathrm{MIN}} \text { to } \mathrm{T}_{\mathrm{MAX}}$ $\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 2 \mathrm{~V} \text { to } \pm 18 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V} \text { to } \pm 18 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 110 \\ & 106 \end{aligned}$	$\begin{aligned} & 30 \\ & 40 \\ & 0.2 \\ & 132 \\ & 126 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 100 \\ & 150 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 112 \\ & 108 \end{aligned}$	$\begin{aligned} & 10 \\ & 25 \\ & 0.2 \\ & 132 \\ & 126 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 50 \\ & 100 \\ & 0.6 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ dB dB $\mu \mathrm{V} /$ month		
INPUT BIAS CURRENT ${ }^{1}$ vs. Temp, Average TC $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$ $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}= \pm 13.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}= \pm 13.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 50 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 200 \\ & 250 \\ & 300 \\ & 400 \end{aligned}$		$\begin{aligned} & 30 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 110 \\ & 160 \\ & 200 \\ & 300 \end{aligned}$	pA pA $\mathrm{pA} /{ }^{\circ} \mathrm{C}$ pA pA		
INPUT OFFSET CURRENT vs. Temp, Average TC $\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$ $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}= \pm 13.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}= \pm 13.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 30 \\ & 0.6 \\ & 80 \\ & 80 \end{aligned}$	$\begin{aligned} & 150 \\ & 250 \\ & 250 \\ & 350 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 30 \\ & \\ & 0.4 \\ & 80 \\ & 80 \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 200 \\ & 200 \\ & 300 \end{aligned}$	pA pA $\mathrm{pA} /{ }^{\circ} \mathrm{C}$ pA pA		
MATCHING CHARACTERISTICS Offset Voltage Input Bias Current ${ }^{2}$ Common-Mode Rejection Power Supply Rejection Crosstalk (Figure 19a)	$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$ $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$ $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$ $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ @ $\mathrm{f}=10 \mathrm{~Hz}$ $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	$\begin{aligned} & 106 \\ & 106 \\ & 106 \\ & 104 \end{aligned}$	150	$\begin{aligned} & 150 \\ & 250 \\ & 300 \\ & 500 \end{aligned}$	$\begin{aligned} & 110 \\ & 108 \\ & 110 \\ & 106 \end{aligned}$	150	$\begin{aligned} & 75 \\ & 150 \\ & 150 \\ & 250 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$ pA pA dB dB dB dB dB		
FREQUENCY RESPONSE Unity Gain Crossover Frequency Slew Rate	$\begin{aligned} & \mathrm{G}=-1 \\ & \mathrm{~T}_{\mathrm{MIN}} \text { to } \mathrm{T}_{\mathrm{MAX}} \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.15 \\ & 0.15 \end{aligned}$			$\begin{aligned} & 0.8 \\ & 0.15 \\ & 0.15 \end{aligned}$			$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{~V} / \mu \mathrm{s} \\ & \mathrm{~V} / \mu \mathrm{s} \end{aligned}$		
INPUT IMPEDANCE Differential Common Mode		$\begin{aligned} & 40\|\mid 2 \\ & 300\|\mid 2 \end{aligned}$			$\begin{aligned} & 40\|\mid 2 \\ & 300\|\mid 2 \end{aligned}$			$\begin{aligned} & \mathrm{M} \Omega \\| \mathrm{pF} \\ & \mathrm{G} \Omega \\| \mathrm{pF} \end{aligned}$		
INPUT VOLTAGE RANGE Common-Mode Voltage Common-Mode Rejection Ratio	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}= \pm 13.5 \mathrm{~V} \\ & \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\mathrm{MAX}} \end{aligned}$	$\begin{aligned} & \pm 13.5 \\ & 110 \\ & 108 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \\ & 132 \\ & 128 \\ & \hline \end{aligned}$		$\begin{gathered} \pm 13.5 \\ 114 \\ 108 \end{gathered}$	$\begin{aligned} & \pm 14 \\ & \\ & 132 \\ & 128 \end{aligned}$		V dB dB		
INPUT CURRENT NOISE	$\begin{aligned} & 0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \\ & \mathrm{f}=10 \mathrm{~Hz} \end{aligned}$		$\begin{aligned} & 3 \\ & 50 \end{aligned}$			$\begin{aligned} & 3 \\ & 50 \end{aligned}$		$\begin{aligned} & \mathrm{pA} \mathrm{p}-\mathrm{p} \\ & \mathrm{fA} / \sqrt{\mathrm{Hz}} \end{aligned}$		
INPUT VOLTAGE NOISE	$\begin{aligned} & 0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \\ & \mathrm{f}=10 \mathrm{~Hz} \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$		$\begin{aligned} & 0.5 \\ & 17 \\ & 15 \end{aligned}$	22		$\begin{aligned} & 0.5 \\ & 17 \\ & 15 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 22 \end{aligned}$	$\begin{aligned} & \mu \mathrm{V} \text { p-p } \\ & \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ & \mathrm{nV} / \sqrt{\mathrm{Hz}} \end{aligned}$		
OPEN-LOOP GAIN	$\begin{aligned} & \mathrm{V}_{\mathrm{O}} \pm \pm 12 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{LOAD}}=10 \mathrm{k} \Omega \\ & \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\mathrm{MAX}} \\ & \mathrm{~V}_{\mathrm{O}} \pm \pm 10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{LOAD}}=2 \mathrm{k} \Omega \\ & \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \\ & \hline \end{aligned}$	$\begin{aligned} & 200 \\ & 150 \\ & 200 \\ & 150 \end{aligned}$	$\begin{aligned} & 2000 \\ & 1500 \\ & 1000 \\ & 1000 \end{aligned}$		$\begin{aligned} & 400 \\ & 300 \\ & 300 \\ & 200 \end{aligned}$	$\begin{aligned} & 2000 \\ & 1500 \\ & 1000 \\ & 1000 \end{aligned}$		$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$		
OUTPUT CHARACTERISTICS Voltage Swing Current Capacitive Load Drive Capability	$\mathrm{R}_{\text {LOAD }}=10 \mathrm{k} \Omega$ $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ Short Circuit $\text { Gain }=+1$	$\begin{aligned} & \pm 13 \\ & \pm 13 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 14 \\ & \pm 15 \\ & \\ & 10,000 \end{aligned}$		$\begin{aligned} & \pm 13 \\ & \pm 13 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 14 \\ & \pm 15 \\ & \\ & 10,000 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~mA} \\ & \mathrm{pF} \end{aligned}$		

			AD706J/A Parameter		Conditions

NOTES

${ }^{1}$ Bias current specifications are guaranteed maximum at either input.
${ }^{2}$ Input bias current match is the difference between corresponding inputs (I_{B} of $-I N$ of Amplifier \#1 minus I_{B} of $-I N$ of Amplifier \#2).
CMRR match is the difference between $\frac{\Delta V_{O S} \# 1}{\Delta V_{C M}}$ for amplifier \#1 and $\frac{\Delta V_{O S} \# 2}{\Delta V_{C M}}$ for amplifier \#2 expressed in dB.
PSRR match is the difference between $\frac{\Delta V_{O S} \# 1}{\Delta V_{S U P P L Y}}$ for amplifier \#l and $\frac{\Delta V_{O S} \# 2}{\Delta V_{S U P P L Y}}$ for amplifier \#2 expressed in dB.
All min and max specifications are guaranteed.
Specifications subject to change without notice.

ORDERING GUIDE

Model	Temperature Range	Description	Package Option
AD706JN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP	$\mathrm{N}-8$
AD706KN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP	$\mathrm{N}-8$
AD706JR	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	SOIC	$\mathrm{R}-8$
AD706JR-REEL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Tape \& Reel	
AD706AQ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Cerdip	$\mathrm{Q}-8$
AD706BQ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Cerdip	$\mathrm{Q}-8$
AD706AR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SOIC	$\mathrm{R}-8$
AD706AR-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Tape \& Reel	

* $\mathrm{N}=$ Plastic DIP; $\mathrm{Q}=$ Cerdip, $\mathrm{R}=$ Small Outline Package.

METALIZATION PHOTOGRAPH

Dimensions shown in inches and (mm). Contact factory for latest dimensions.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD706 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

Figure 1. Typical Distribution of Input Offset Voltage

Figure 4. Input Common-Mode Voltage Range vs. Supply Voltage

Figure 7. Typical Distribution of Offset Voltage Drift

Figure 2. Typical Distribution of Input Bias Current

Figure 5. Large Signal Frequency Response

Figure 8. Change in Input Offset Voltage vs. Warm-Up Time

Figure 3. Typical Distribution of Input Offset Current

Figure 6. Offset Voltage Drift vs. Source Resistance

Figure 9. Input Bias Current vs. Common-Mode Voltage
AD706

Figure 10. Input Noise Voltage Spectral Density

Figure 13. Quiescent Supply Current vs. Supply Voltage

Figure 11. Input Noise Current Spectral Density

Figure 14. Common-Mode Rejection Ratio vs. Frequency

Figure 12. 0.1 Hz to 10 Hz Noise Voltage

Figure 15. Power Supply Rejection Ratio vs. Frequency

Figure 16. Open-Loop Gain vs. Load Resistance vs. Temperature

Figure 17. Open-Loop Gain and Phase Shift vs. Frequency

Figure 18. Output Voltage Swing vs. Supply Voltage

Figure 19a. Crosstalk vs. Frequency

Figure 20. Magnitude of Closed-Loop Output Impedance vs. Frequency

Figure 21a. Unity Gain Follower (For Large Signal Applications, Resistor R_{F} Limits the Current Through the Input Protection Diodes)

Figure 19b. Crosstalk Test Circuit

Figure 21b. Unity Gain Follower Large Signal Pulse Response, $R_{F}=10 \mathrm{k} \Omega, C_{L}=1,000 \mathrm{pF}$

Figure 21c. Unity Gain Follower Small Signal Pulse Response, $R_{F}=0 \Omega, C_{L}=100 \mathrm{pF}$

Figure 21d. Unity Gain Follower Small Signal Pulse Response, $R_{F}=0 \Omega, C_{L}=1000 \mathrm{pF}$

Figure 22a. Unity Gain Inverter Connection

Figure 22b. Unity Gain Inverter Large Signal Pulse Response, $C_{L}=1,000 \mathrm{pF}$

Figure 22c. Unity Gain Inverter Small Signal Pulse Response, $C_{L}=100 \mathrm{pF}$

Figure 22d. Unity Gain Inverter Small Signal Pulse Response, $C_{L}=1000 \mathrm{pF}$

Figure 23 shows an in-amp circuit that has the obvious advantage of requiring only one AD706 rather than three op amps, with subsequent savings in cost and power consumption. The transfer function of this circuit (without R_{G}) is:

$$
\begin{gathered}
V_{\text {OUT }}=\left(V_{I N \# 1}-V_{I N \# 2}\right)\left(1+\frac{R_{4}}{R_{3}}\right) \\
\text { for } R_{1}=R_{4} \text { and } R_{2}=R_{3}
\end{gathered}
$$

Input resistance is high, thus permitting the signal source to have an unbalanced output impedance.

Figure 23. A Two Op-Amp Instrumentation Amplifier
Furthermore, the circuit gain may be fine trimmed using an optional trim resistor, R_{G}. Like the three op-amp circuit, CMR
increases with gain, once initial trimming is accomplished-but CMR is still dependent upon the ratio matching of Resistors R_{1} through R_{4}. Resistor values for this circuit using the optional gain resistor, R_{G}, can be calculated using:

$$
\begin{aligned}
& R_{1}=R_{4}=49.9 \mathrm{k} \Omega \\
& R_{2}=R_{3}=\frac{49.9 \mathrm{k} \Omega}{0.9 G-1} \\
& R_{G}=\frac{99.8 \mathrm{k} \Omega}{0.06 \mathrm{G}}
\end{aligned}
$$

where $G=$ Desired Circuit Gain
Table I provides practical 1% resistance values. (Note that without resistor $\mathrm{R}_{\mathrm{G}}, \mathrm{R}_{2}$ and $\mathrm{R}_{3}=49.9 \mathrm{k} \Omega / \mathrm{G}-1$.)

Table I. Operating Gains of Amplifiers A1 and A2 and Practical 1\% Resistor Values for the Circuit of Figure 23

Circuit Gain	Gain of A1	Gain of A2	$\mathbf{R}_{2}, \mathbf{R}_{\mathbf{3}}$	$\mathbf{R}_{\mathbf{1}}, \mathbf{R}_{\mathbf{4}}$
1.10	11.00	1.10	$499 \mathrm{k} \Omega$	$49.9 \mathrm{k} \Omega$
1.33	4.01	1.33	$150 \mathrm{k} \Omega$	$49.9 \mathrm{k} \Omega$
1.50	3.00	1.50	$100 \mathrm{k} \Omega$	$49.9 \mathrm{k} \Omega$
2.00	2.00	2.00	$49.9 \mathrm{k} \Omega$	$49.9 \mathrm{k} \Omega$
10.1	1.11	10.10	$5.49 \mathrm{k} \Omega$	$49.9 \mathrm{k} \Omega$
101.0	1.01	101.0	499Ω	$49.9 \mathrm{k} \Omega$
1001	1.001	1001	49.9Ω	$49.9 \mathrm{k} \Omega$

For a much more comprehensive discussion of in-amp applications, refer to the Instrumentation Amplifier Applications Guideavailable free from Analog Devices, Inc.

Figure 24. A 1 Hz, 4-Pole Active Filter

A $1 \mathbf{H z}$, 4-Pole, Active Filter

Figure 24 shows the AD706 in an active filter application. An important characteristic of the AD706 is that both the input bias current, input offset current and their drift remain low over most of the op amp's rated temperature range. Therefore, for most applications, there is no need to use the normal balancing resistor. Adding the balancing resistor enhances performance at high temperatures, as shown by Figure 25.

Figure 25. Vos vs. Temperature Performance of the 1 Hz Filter

Table II. 1 Hz, 4-Pole, Low Pass Filter Recommended Component Values

Desired Low Pass Response	Section 1 Frequency $(\mathbf{H z})$	\mathbf{Q}	Section 2 Frequency $(\mathbf{H z})$	\mathbf{Q}	$\mathbf{C} 1$ $(\mu \mathbf{F})$	$\mathbf{C} 2$ $(\mu \mathbf{F})$	$\mathbf{C 3}$ $(\mu \mathbf{F})$	$\mathbf{C 4}$ $(\mu \mathbf{F})$
Bessel	1.43	0.522	1.60	0.806	0.116	0.107	0.160	0.0616
Butterworth	1.00	0.541	1.00	1.31	0.172	0.147	0.416	0.0609
0.1 dB Chebychev	0.648	0.619	0.948	2.18	0.304	0.198	0.733	0.0385
0.2 dB Chebychev	0.603	0.646	0.941	2.44	0.341	0.204	0.823	0.0347
0.5 dB Chebychev	0.540	0.705	0.932	2.94	0.416	0.209	1.00	0.0290
1.0 dB Chebychev	0.492	0.785	0.925	3.56	0.508	0.206	1.23	0.0242

NOTE

Specified Values are for a -3 dB point of 1.0 Hz . For other frequencies simply scale capacitors C 1 through C 4 directly, i.e.: for 3 Hz Bessel response, $\mathrm{C} 1=0.0387 \mu \mathrm{~F}, \mathrm{C} 2=0.0357 \mu \mathrm{~F}, \mathrm{C} 3=0.0533 \mu \mathrm{~F}, \mathrm{C} 4=0.0205 \mu \mathrm{~F}$.

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

