January 2003

850µV (limit)

-40°C to 125°C

9nV/√Hz

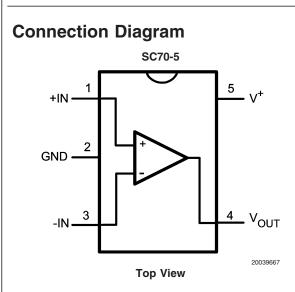
LMV771 Low Offset, Low Noise, RRO Operational Amplifier in SC70-5

General Description

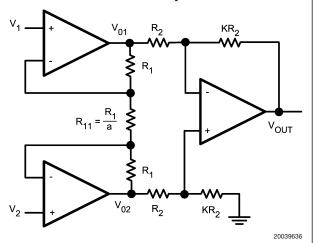
The LMV771 is a low noise and low cost precision operational amplifier intended for use in a wide range of applications. Other important characteristics of the device include extended operating temperature range, -40° C to 125° C, tiny SC70-5 package, and low input bias current.

The LMV771 is designed for precision, low noise, low voltage, and miniature systems. It provides rail-to-rail output swing into heavy loads. The maximum input offset voltage is $850\mu V$ at room temperature and the input common mode voltage range includes ground.

The LMV771 is offered in the space saving SC70-5 package.


Features

(Typical 2.7V Supply Values; Unless Otherwise Noted)


- Guaranteed 2.7V and 5V specifications
- Maximum V_{OS}
- Voltage noise (1kHz)
- Rail-to-Rail output swing - w/600Ω load 100mV from rail 50mV from rail — w/2k Ω load ■ Silicon Dust[™], SC70-5 package 2.0x2.0x1.0mm Open loop gain w/2kΩ load 100dB ■ V_{CM} 0 to V⁺ -0.9V Supply current 550µA Gain bandwidth product 3.5MHz
- Temperature range

Applications

- Transducer amplifier
- Instrumentation amplifier
- Precision current sensing
- Data acquisition systems
- Active filters and buffers
- Sample and hold
- Portable/battery powered electronics

Instrumentation Amplifier

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

ESD Tolerance (Note 2)	
Machine Model	200V
Human Body Model	2000V
Differential Input Voltage	± Supply Voltage
Supply Voltage (V ⁺ -V ⁻)	6.5V
Output Short Circuit to V ⁺	(Note 3)
Output Short Circuit to V ⁻	(Note 4)
Storage Temperature Range	–65°C to 150°C

Junction Temperature (Note 5)	150°C
Mounting Temp.	
Infrared or Convection (20 sec)	235°C
Wave Soldering Lead Temp (10	
sec)	260°C

Operating Ratings (Note 1)

Temperature Range	–40°C to 125°C
Thermal Resistance (θ_{JA})	
SC70-5 Package	440 °C/W

2.7V DC Electrical Characteristics (Note 10)

Unless otherwise specified, all limits guaranteed for $T_J = 25^{\circ}C$. V⁺ = 2.7V, V⁻ = 0V, V_{CM} = V⁺/2, V_O = V⁺/2 and R_L > 1M Ω . **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Condition	Min	Тур	Max	Units
			(Note 7)	(Note 6)	(Note 7)	
Vos	Input Offset Voltage			0.30	0.85	mV
					1.0	
TCV _{OS}	Input Offset Voltage Average Drift			-0.45		µV/°C
I _B	Input Bias Current			-0.1	100	pА
l _{os}	Input Offset Current			0.004	100	pА
l _s	Supply Current			550	900 910	μA
CMRR	Common Mode Rejection Ratio	$0.5 \le V_{CM} \le 1.2V$	74	80		dB
			72			
PSRR	Power Supply Rejection Ratio	$2.7V \le V^+ \le 5V$	82	90		dB
			76			
V _{CM}	Input Common-Mode Voltage Range	For CMRR ≥ 50dB	0		1.8	V
A _V	Large Signal Voltage Gain	$R_{L} = 600\Omega$ to 1.35V,	92	100		
	(Note 8)	$V_{\rm O} = 0.2V$ to 2.5V	80			dB
		$R_L = 2k\Omega$ to 1.35V,	98	100		uБ
		$V_{\rm O} = 0.2V$ to 2.5V	86			
Vo	Output Swing	$R_{L} = 600\Omega$ to 1.35V	0.11	0.084 to	2.59	
		$V_{IN} = \pm 100 \text{mV}$	0.14	2.62	2.56	V
		$R_L = 2k\Omega$ to 1.35V	0.05	0.026 to	2.65	v
		$V_{IN} = \pm 100 \text{mV}$	0.06	2.68	2.64	
lo	Output Short Circuit Current	Sourcing, $V_O = 0V$	18	24		
		V _{IN} = 100mV	11			mA
		Sinking, $V_O = 2.7V$	18	22		
		$V_{IN} = -100 \text{mV}$	11			

2.7V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_J = 25^{\circ}C$. V⁺ = 5.0V, V⁻ = 0V, V_{CM} = V⁺/2, V_O = V⁺/2 and R_L > 1M Ω . **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
			(Note 7)	(Note 6)	(Note 7)	
SR	Slew Rate	(Note 9)		1.4		V/µs
GBW	Gain-Bandwidth Product			3.5		MHz
Φ_{m}	Phase Margin			79		Deg
		•				

2.7V AC Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $T_J = 25^{\circ}C$. V⁺ = 5.0V, V⁻ = 0V, V_{CM} = V⁺/2, V_O = V⁺/2 and R_L > 1M Ω . Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Min (Note 7)	Typ (Note 6)	Max (Note 7)	Units
G _m	Gain Margin			-15		dB
e _n	Input-Referred Voltage Noise (Flatband)	f = 10KHz		7.5		nV/√Hz
e _n	Input-Referred Voltage Noise (I/f)	f = 100Hz		17		nV/√Hz
i _n	Input-Referred Current Noise	f = 1kHz		0.001		pA/ √Hz
THD	Total Harmonic Distortion	$ f = 1 kHz, A_V = +1 \\ R_L = 600 \Omega, V_{IN} = 1 V_{PP} $		0.007		%

5.0V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_J = 25^{\circ}C$. V⁺ = 5.0V, V⁻ = 0V, V_{CM} = V⁺/2, V_O = V⁺/2 and R_L > 1M Ω . **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Condition	Min(Note	Тур	Max	Units
			7)	(Note 6)	(Note 7)	
Vos	Input Offset Voltage			0.25	0.85	mV
					1.0	
TCV _{OS}	Input Offset Voltage Average			-0.35		µV/°C
	Drift					
I _B	Input Bias Current			-0.23	100	pА
l _{os}	Input Offset Current			0.017	100	pА
ls	Supply Current			600	950	μA
					960	μΛ
CMRR	Common Mode Rejection Ratio	$0.5 \le V_{CM} \le 3.5V$	80	90		dB
			79			UD UD
PSRR	Power Supply Rejection Ratio	$2.7V \le V^+ \le 5V$	82	90		dB
			76			
V _{CM}	Input Common-Mode Voltage	For CMRR ≥ 50dB	0		4.1	V
	Range					
A _V	Large Signal Voltage Gain	$R_L = 600\Omega$ to 2.5V,	92	100		
	(Note 8)	$V_{\rm O} = 0.2V$ to 4.8V	89			dB
		$R_L = 2k\Omega$ to 2.5V,	98	100		uВ
		$V_{\rm O} = 0.2V$ to 4.8V	95			
Vo	Output Swing	$R_L = 600\Omega$ to 2.5V	0.15	0.112 to	4.85	
		$V_{IN} = \pm 100 \text{mV}$	0.23	4.9	4.77	V
		$R_L = 2k\Omega$ to 2.5V	0.06	0.035 to	4.94	v
		$V_{IN} = \pm 100 \text{mV}$	0.07	4.97	4.93	
I _o	Output Short Circuit Current	Sourcing, $V_{O} = 0V$	35	75		
		V _{IN} = 100mV	35			m۸
		Sinking, $V_{O} = 2.7V$	35	66		mA
		$V_{IN} = -100 \text{mV}$	35			

5.0V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_J = 25^{\circ}C$. V⁺ = 5.0V, V⁻ = 0V, V_{CM} = V⁺/2, V_O = V⁺/2 and R_L > 1M Ω . **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
			(Note 7)	(Note 6)	(Note 7)	
SR	Slew Rate	(Note 9)		1.4		V/µs
		•				

LMV771

5.0V AC Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $T_J = 25^{\circ}C$. V⁺ = 5.0V, V⁻ = 0V, V_{CM} = V⁺/2, V_O = V⁺/2 and R_L > 1M\Omega. **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
			(Note 7)	(Note 6)	(Note 7)	
GBW	Gain-Bandwidth Product			3.5		MHz
$\Phi_{\rm m}$	Phase Margin			79		Deg
G _m	Gain Margin			-15		dB
e _n	Input-Referred Voltage Noise (Flatband)	f = 10KHz		6.5		nV/ √Hz
e _n	Input-Referred Voltage Noise (I/f)	f = 100Hz		12		nV/ √Hz
i _n	Input-Referred Current Noise	f = 1kHz		0.001		pA/ √Hz
THD	Total Harmonic Distortion	$ f = 1 kHz, A_V = +1 R_L = 600 \Omega, V_{IN} = 1 V_{PP} $		0.007		%

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics. **Note 2:** Human body model, 1.5kΩ in series with 100pF. Machine model, 0Ω in series with 20pF.

Note 2: Human body model, $1.5k\Omega$ in series with 100pF. Machine model, 0Ω in series with

Note 3: Shorting output to V^+ will adversely affect reliability.

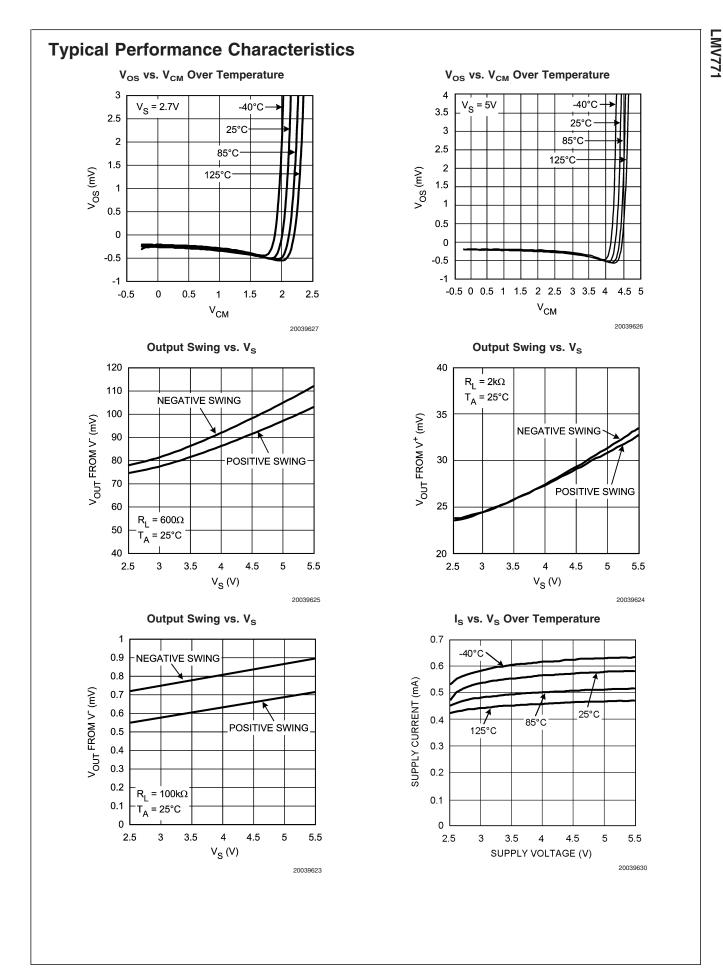
Note 4: Shorting output to V^- will adversely affect reliability.

Note 5: The maximum power dissipation is a function of $T_{J(MAX)}$, θ_{JA} , and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} - T_A)/\theta_{JA}$. All numbers apply for packages soldered directly into a PC board.

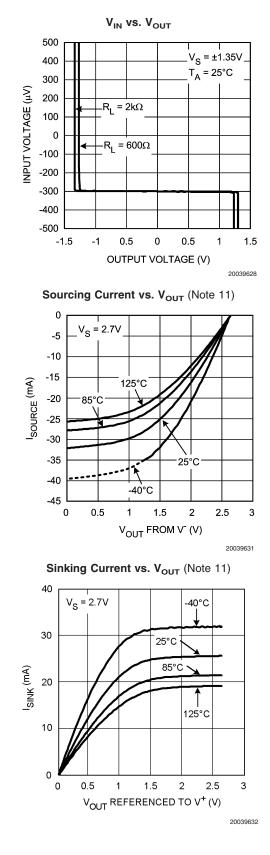
Note 6: Typical Values represent the most likely parametric norm.

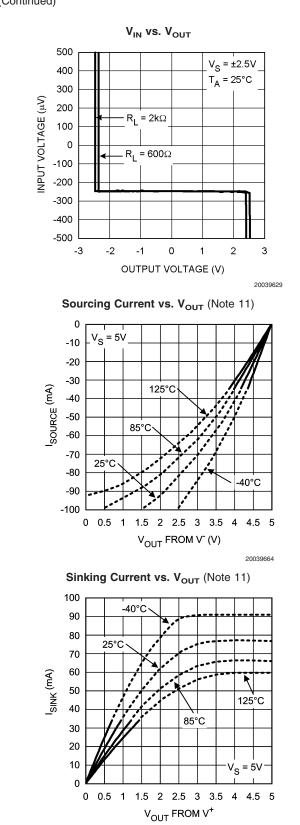
Note 7: All limits are guaranteed by testing or statistical analysis.

Note 8: R_L is connected to mid-supply. The output voltage is set at 200mV from the rails. $V_O = GND+0.2V$ and $V_O = V^+ -0.2V$

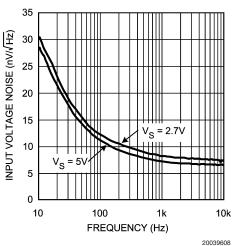

Note 9: Connected as Voltage follower with 2V_{PP} step input. Number Specified is the slower of positive and negative slew Rates.

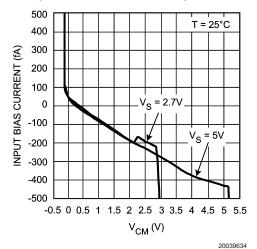
Note 10: Electrical Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that $T_J = T_A$. No guarantee of parametric performance is indicated in the electrical tables under the conditions of internal self-heating where $T_J = T_A$. Absolute Maximum Rating indicated junction temperature limits beyond which the device may be permanently degraded, either mechanically or electrically.

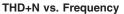

Note 11: Continuous operation of the device with an output short circuit current larger than 35mA may cause permanent damage to the device.

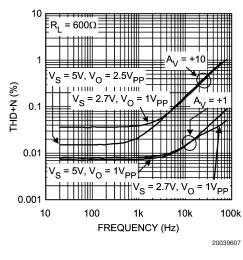

Ordering Information

Package	Part Number	Package Marking	Transport Media	NSC Drawing
SC70-5	LMV771MG	A75	1k Units Tape and Reel	MAA05A
	LMV771MGX		3k Units Tape and Reel	

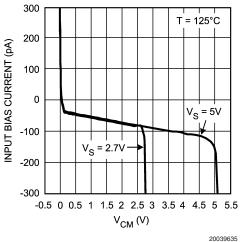


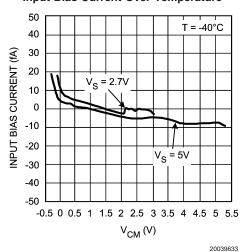



20039663

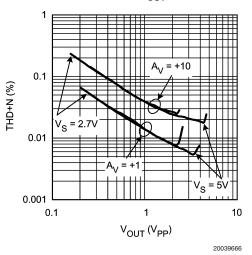

Input Voltage Noise vs. Frequency

Input Bias Current Over Temperature

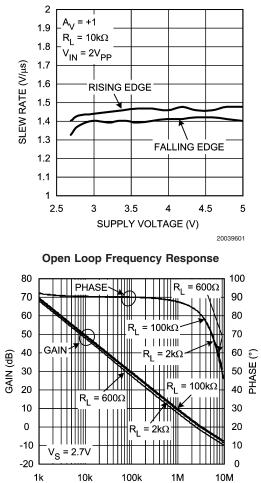




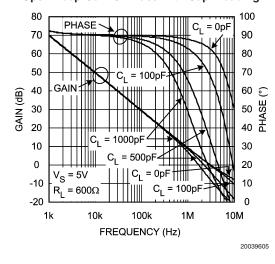
 Input Bias Current Over Temperature

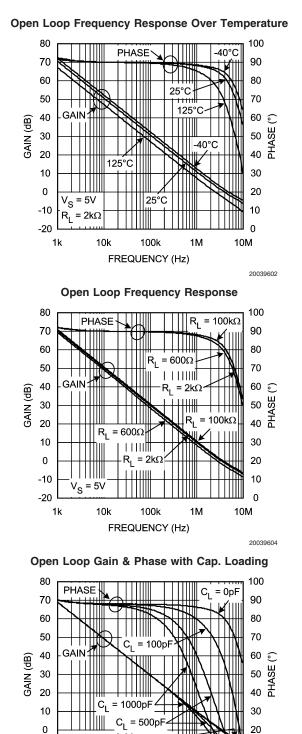

 300

Input Bias Current Over Temperature


THD+N vs. V_{OUT}

www.national.com





Open Loop Gain & Phase with Cap. Loading

20039603

FREQUENCY (Hz)

V_S = 5V

R

= 100kΩ

10k

-10

-20

1k

 $C_1 = 0 p F$

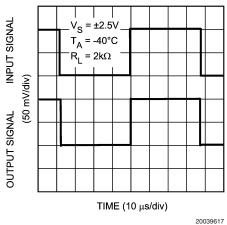
 C_1

100k

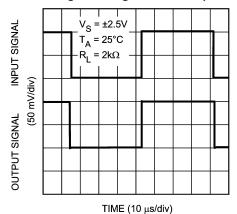
FREQUENCY (Hz)

100pF

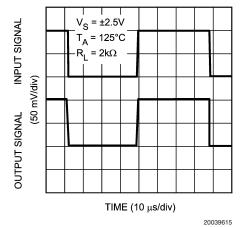
1M


10

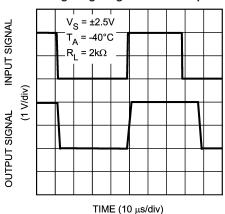
0


20039606

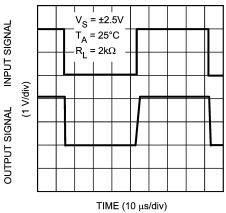
10M



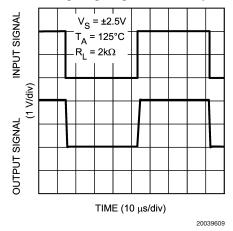
Non-Inverting Small Signal Pulse Response



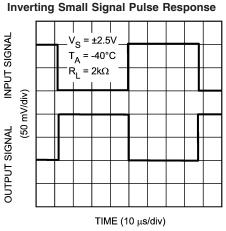
20039616

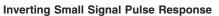


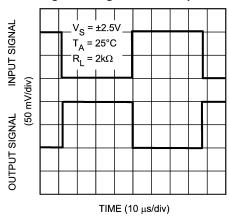
Non-Inverting Large Signal Pulse Response


20039611

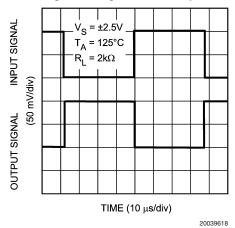
Non-Inverting Large Signal Pulse Response

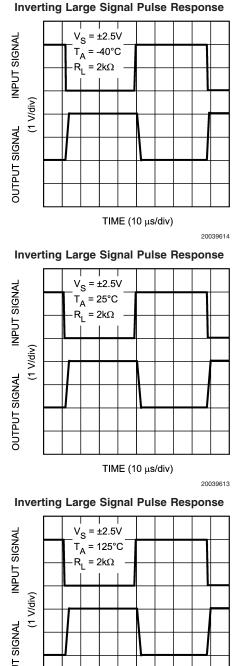

20039610

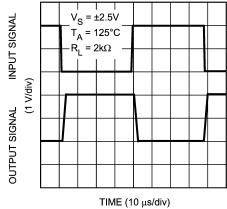



LMV771

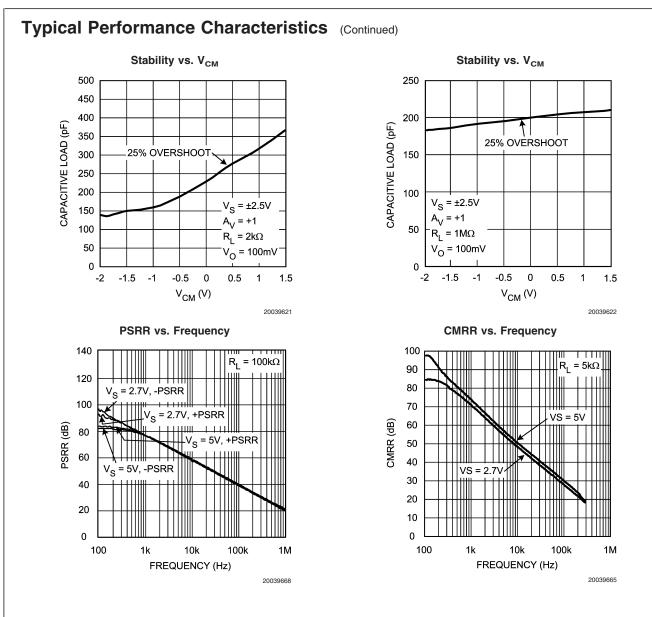
Typical Performance Characteristics (Continued)


20039619





20039620

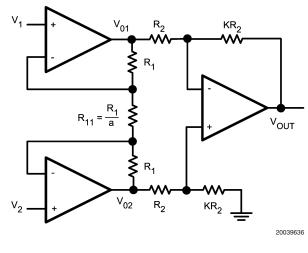


20039612

LMV771

Application Note

By Omh's Law:


ν

LMV771

The LMV771 is a single, low cost precision amplifier with very low noise and ultra low offset voltage.

INSTRUMENTATION AMPLIFIER

Measurement of very small signals with an amplifier requires close attention to the input impedance of the amplifier, gain of the overall signal on the inputs, and the gain on each input since we are only interested in the difference of the two inputs and the common signal is considered noise. A classic solution is an instrumentation amplifier. Instrumentation amplifiers have a finite, accurate, and stable gain. Also they have extremely high input impedances and very low output impedances. Finally they have an extremely high CMRR so that the amplifier can only respond to the differential signal. A typical instrumentation amplifier is shown in *Figure 1*.

FIGURE 1.

There are two stages in this amplifier. The last stage, output stage, is a differential amplifier. In an ideal case the two amplifiers of the first stage, input stage, would be set up as buffers to isolate the inputs. However they cannot be connected as followers because of real amplifiers mismatch. That is why there is a balancing resistor between the two. The product of the two stages of the gain will give the gain of the instrumentation amplifier. Ideally, the CMRR should be infinity. However the output stage has a small non-zero common mode gain which results from resistor mismatch.

In the input stage of the circuit, current is the same across all resistors. This is due to the high input impedance and low input bias current of the LMV771. With the node equations we have:

(1)

$$V_{01} - V_{02} = (2R_1 + R_{11}) I_{R_{11}}$$

= (2a + 1) $R_{11} \cdot I_{R_{11}}$
= (2a + 1) $V_{R_{11}}$

However:

So we have:

$$V_{O1} - V_{O2} = (2a + 1) (V_1 - V_2)$$

(4)

(2)

Now looking at the output of the instrumentation amplifier:

 $V_{R_{11}} = V_1$

$$V_{O} = \frac{KR_{2}}{R_{2}} (V_{O2} - V_{O1})$$
$$= -K (V_{O1} - V_{O2})$$
(5)

Substituting from equation 4:

(6)

This shows the gain of the instrumentation amplifier to be: $K(2a\!+\!1)$

Typical values for this circuit can be obtained by setting: a = 12 and K= 4. This results in an overall gain of -100.

ACTIVE FILTER

Active Filters are circuits with amplifiers, resistors, and capacitors. The use of amplifiers instead of inductors, which are used in passive filters, enhances the circuit performance while reducing the size and complexity of the filter.

The simplest active filters are designed using an inverting op amp configuration where at least one reactive element has been added to the configuration. This means that the op amp will provide "frequency-dependent" amplification, since reactive elements are frequency dependent devices.

LOW PASS FILTER

The following shows a very simple low pass filter.

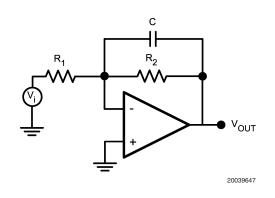


FIGURE 2.

LMV771

Application Note (Continued)

The transfer function can be expressed as follows: By KCL:

$$\frac{-V_{i}}{R_{1}} - \frac{V_{0}}{\left[\frac{1}{jwc}\right]} - \frac{V_{0}}{R_{2}} = 0$$

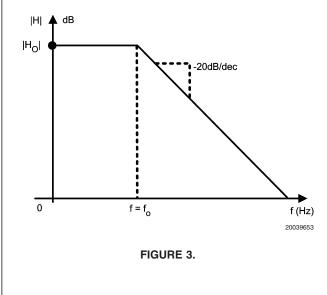
Simplifying this further results in:

$$V_{O} = \frac{-R_{2}}{R_{1}} \left[\frac{1}{jwcR_{2} + 1} \right] V_{i}$$
(8)

(7)

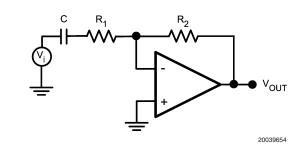
(9)

or


$$\frac{V_{O}}{V_{i}} = \frac{-R_{2}}{R_{1}} \left[\frac{1}{jwcR_{2} + 1} \right]$$

Now, substituting $\omega = 2\pi f$, so that the calculations are in f(Hz) and not ω (rad/s), and setting the DC gain $\begin{bmatrix} -R_2 \\ -R_2 \end{bmatrix}$ and

$$H = \frac{v_0}{V_i} \qquad \left[\begin{array}{c} R_1 & T_0 \\ H = H_0 \left[\frac{1}{j2\pi f c R_2 + 1} \right] \end{array} \right]$$
(10)


Set:
$$f_0 = \frac{1}{2\pi R_2 C}$$

 $H = H_0 \left[\frac{1}{1 + j (f/f_0)}\right]$
(11)

Low pass filters are known as lossy integrators because they only behave as an integrator at higher frequencies. Just by looking at the transfer function one can predict the general form of the bode plot. When the f/f_O ratio is small, the capacitor is in effect an open circuit and the amplifier behaves at a set DC gain. Starting at f_O , -3dB corner, the capacitor will have the dominant impedance and hence the circuit will behave as an integrator and the signal will be attenuated and eventually cut. The bode plot for this filter is shown in the following picture:

HIGH PASS FILTER

In a similar approach, one can derive the transfer function of a high pass filter. A typical first order high pass filter is shown below:

FIGURE 4.

Writing the KCL for this circuit : $(V_1 \mbox{ denotes the voltage between } C \mbox{ and } R_1)$

$$\frac{V_{i}}{C} = \frac{V_{1} - V_{i}}{R_{1}}$$

$$\frac{V^- + V_1}{R_1} = \frac{V^- + V_0}{R_2}$$

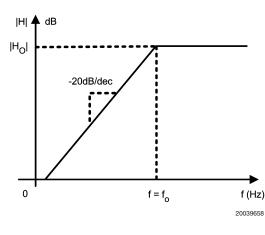
(13)

(14)

(12)

Solving these two equations to find the transfer function and using:

 $f_0 = \frac{1}{2\pi R_2 C}$


(high frequency gain) $H_0 = \frac{-R_2}{R_1}$ and $H = \frac{V_0}{V_i}$

 $H = H_O \frac{j (f/f_o)}{1 + j (f/f_o)}$

Looking at the transfer function, it is clear that when f/f_O is small, the capacitor is open and hence no signal is getting in to the amplifier. As the frequency increases the amplifier starts operating. At $f = f_O$ the capacitor behaves like a short circuit and the amplifier will have a constant, high frequency, gain of H_O . The bode plot of the transfer function follows:

Application Note (Continued)

BAND PASS FILTER

forms the high pass filter while the feedback impedance forms the low pass filter. Choosing the corner frequencies so that $f_1 \le f_2$, then all the frequencies in between, $f_1 \le f \le f_2$, will pass through the filter while frequencies below f_1 and above f_2 will be cut off.

The transfer function can be easily calculated using the same methodology as before.

$$H = H_{O} \frac{j (f/f_{1})}{[1 + j (f/f_{1})] [1 + j (f/f_{2})]}$$
(15)

Where

 $f_1 = \frac{1}{2\pi R_1 C_1}$ $f_2 = \frac{1}{2\pi R_2 C_2}$ $H_0 = \frac{-R_2}{R_1}$

The transfer function is presented in the following figure.

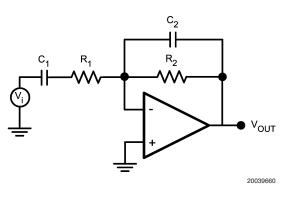


FIGURE 6.

Combining a low pass filter and a high pass filter will generate a band pass filter. In this network the input impedance $% \left({{\left[{{n_{1}} \right]}} \right)$

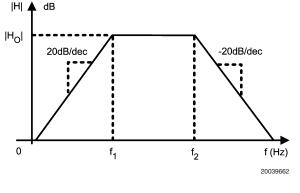



FIGURE 7.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

Français Tel: +33 (0) 1 41 91 8790

www.national.com