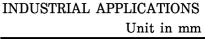
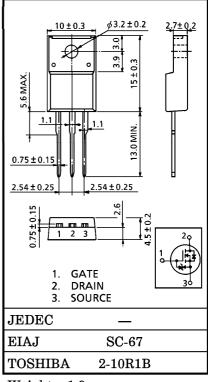
TOSHIBA FIELD EFFECT TRANSISTOR SILICON N CHANNEL MOS TYPE (π -MOS V)

2 S K 2 5 4 5


HIGH SPEED, HIGH VOLTAGE SWITCHING APPLICATIONS DC-DC CONVERTER, RELAY DRIVE AND MOTOR DRIVE APPLICATIONS


Low Drain-Source ON Resistance : $R_{DS(ON)} = 0.9\Omega$ (Typ.)

- High Forward Transfer Admittance : $|Y_{fs}| = 5.5S$ (Typ.)
- Low Leakage Current : $I_{DSS} = 100 \mu A$ (Max.) ($V_{DS} = 600 V$)
- : $V_{th} = 2.0 \sim 4.0 V (V_{DS} = 10V, I_{D} = 1mA)$ Enhancement-Mode

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERIS	SYMBOL	RATING	UNIT	
Drain-Source Voltage	V _{DSS}	600	V	
Drain-Gate Voltage (RGS	VDGR	600	V	
Gate-Source Voltage	V _{GSS}	± 30	V	
Drain Current	DC	ID	6	Α
	Pulse	I _{DP}	24	Α
Drain Power Dissipation	PD	40	W	
Single Pulse Avalanche	EAS	345	mJ	
Avalanche Current	I _{AR}	I _{AR} 6		
Repetitive Avalanche En	EAR	4	mJ	
Channel Temperature	T _{ch}	150	°C	
Storage Temperature Ran	T _{stg}	$-55 \sim 150$	°C	

Weight: 1.9g

THERMAL CHARACTERISTICS

CHARACTERISTIC	SYMBOL	MAX.	UNIT
Thermal Resistance, Channel to Case	R _{th (ch-c)}	3.125	°C/W
Thermal Resistance, Channel to Ambient	R _{th (ch-a)}	62.5	°C/W

Note ;

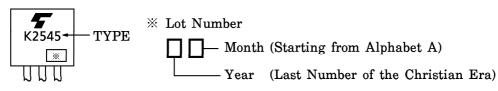
** V_{DD}=90V, T_{ch} =25°C (initial), L=16.8mH, R_{G} =25 Ω , I_{AR} =6A

This transistor is an electrostatic sensitive device. Please handle with caution.

961001EAA2

TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook. The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infrigments of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others. The information contained herein is subject to change without notice.

Repetitive rating ; Pulse Width Limited by Max. junction temperature.

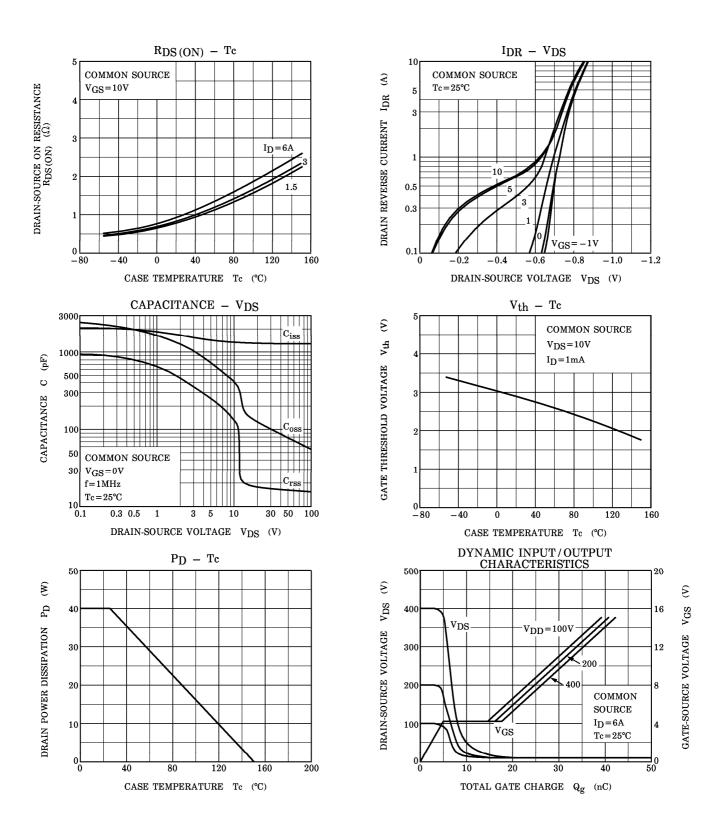

ELECTRICAL CHARACTERISTICS (Ta = 25°C)

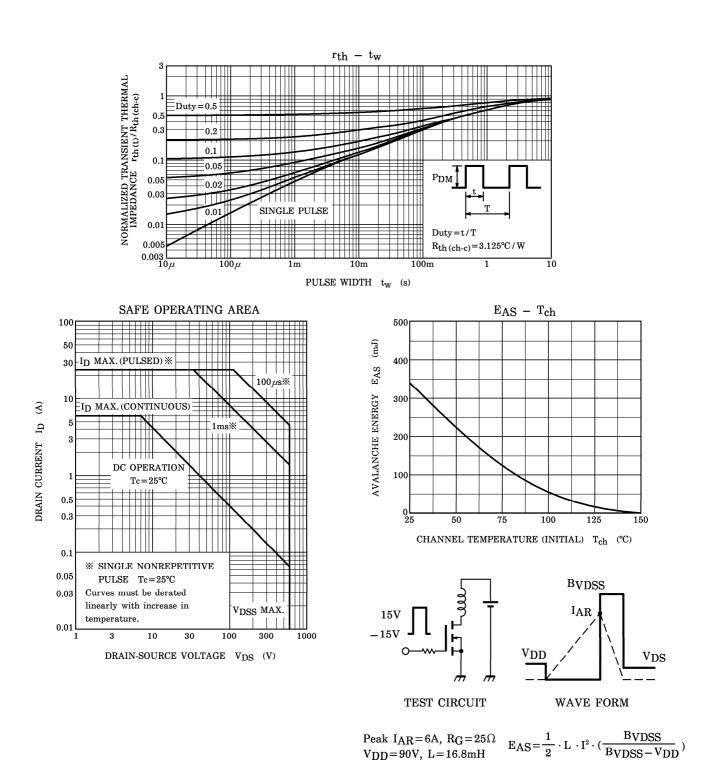
CHARA	CTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Gate Leakage	e Current	IGSS	$V_{GS} = \pm 25V, V_{DS} = 0V$	_	_	±10	μA
Gate-Source I Voltage	Breakdown		$I_{G} = \pm 10 \mu A, V_{DS} = 0V$	± 30	_	_	v
Drain Cut-off	f Current	IDSS	$V_{DS} = 600V, V_{GS} = 0V$	_	—	100	μA
Drain-Source Voltage	Breakdown	V (BR) DSS	$I_D=10mA$, $V_{GS}=0V$	600	_	_	v
Gate Thresho	old Voltage	V _{th}	$V_{DS} = 10V, I_D = 1mA$	2.0	—	4.0	V
Drain-Source	ON Resistance	R _{DS} (ON)	$V_{GS}=10V, I_D=3A$	_	0.9	1.25	Ω
Forward Tran Admittance	nsfer	Y _{fs}	$V_{DS}=10V, I_{D}=3A$	2.0	5.5	_	S
Input Capaci	Input Capacitance			_	1300	—	
Reverse Transfer Capacitance		C _{iss} C _{rss}	V_{DS} =10V, V_{GS} =0V, f=1MHz	_	130	_	pF
Output Capa	Output Capacitance			_	400	—	
Rise Switching Time Fall	Rise Time	C _{oss} t _r	$V_{\rm GS} \stackrel{10V}{}_{\rm 0V} \prod \stackrel{I_{\rm D}=3A}{\overset{I_{\rm D}=3A}{\overset{V_{\rm OUT}}{\overset{V_{\rm OUT}}{\overset{I_{\rm D}=3A}{\overset{V_{\rm OUT}}{\overset{V_{\rm OUT}}{\overset{I_{\rm D}=3A}{\overset{V_{\rm OUT}}{\overset{V_{\rm OUT}}}{\overset{V_{\rm OUT}}{\overset{V_{\rm OUT}}{\overset{V_{\rm OUT}}}{\overset{V_{\rm OUT}}{\overset{V_{\rm OUT}}}{\overset{V_{\rm OUT}}{\overset{V_{\rm OUT}}{\overset{V_{\rm OUT}}{\overset{V_{\rm OUT}}{\overset{V_{\rm OUT}}}{\overset{V_{\rm OUT}}{\overset{V_{\rm OUT}}}{\overset{V_{\rm OUT}}{\overset{V_{\rm OUT}}{\overset{V_{\rm OUT}}{\overset{V_{\rm OUT}}}{\overset{V_{\rm OUT}}{\overset{V_{\rm OUT}}{\overset{V_{\rm OUT}}}{\overset{V_{\rm OUT}}}{\overset{V_{\rm OUT}}{\overset{V_{\rm OUT}}}{\overset{V_{\rm OU}}{\overset{V_{\rm OU}}}{\overset{V_{\rm OU}}}{\overset{V}}{\overset{V}}}{\overset{V}}}}}}}}}}}}$	_	25	_	
	Turn-on Time	t _{on}	$ \begin{array}{c} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} C$	_	45	_	na
	Fall Time	tf			40	_	ns
	Turn-off Time	t _{off}	$V_{IN}: t_r, t_f < 5ns,$ Duty $\leq 1\%, t_W = 10 \mu s$		150	_	
Total Gate Charge (Gate- Source Plus Gate-Drain)		$\mathbf{Q}_{\mathbf{g}}$	$V_{-} \doteq 400 V$ $V_{-} = 10 V$ $V_{-} = 0$	_	30	_	
Gate-Source Charge		Q_{gs}	$V_{DD} = 400V, V_{GS} = 10V, I_D = 6A$	_	18	—	nC
Gate-Drain ("Miller") Charge		$\mathbf{Q}_{\mathbf{gd}}$		—	12	—	

SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Continuous Drain Reverse Current	I _{DR}	—	_	_	6	A
Pulse Drain Reverse Current	I _{DRP}	—	_	_	24	A
Diode Forward Voltage	V _{DSF}	$I_{DR}=6A, V_{GS}=0V$	_	—	-1.7	V
Reverse Recovery Time		$I_{DR}=6A, V_{GS}=0V$		1000		ns
Reverse Recovery Charge	Q_{rr}	$\mathrm{dI}_{\mathrm{DR}}$ / dt = 100A / $\mu \mathrm{s}$		7.0	_	μ C

MARKING


TOSHIBA


50

20

 $I_D - V_{DS}$ $I_D - V_{DS}$ 5 10 4.8 10 10, 15 COMMON COMMON 5.2 15 SOURCE SOURCE 4.6 (Y 4 $Tc = 25^{\circ}C$ (\mathbf{A}) $Tc = 25^{\circ}C$ q Ω 4.8 DRAIN CURRENT 3 DRAIN CURRENT 4.4 4.6 2 4.2 4.4 $V_{GS} = 4V$ 4.2 $V_{GS} = 4V$ 0 0 2 4 6 8 10 10 20 30 40 0 DRAIN-SOURCE VOLTAGE V_{DS} (V) DRAIN-SOURCE VOLTAGE V_{DS} (V) $V_{DS} - V_{GS}$ $I_D - V_{GS}$ 10 10 COMMON SOURCE COMMON S SOURCE $\mathrm{Tc}\!=\!25^{\circ}\mathrm{C}$ DRAIN-SOURCE VOLTAGE VDS (\mathbf{A}) $V_{DS} = 20V$ 8 q ID=6A DRAIN CURRENT 6 100 25 $-\mathrm{Tc} = -55^{\circ}\mathrm{C}$ -3 1.5 0^L0 0L 2 6 8 10 4 8 1216 GATE-SOURCE VOLTAGE V_{GS} (V) GATE-SOURCE VOLTAGE V_{GS} (V) $|Y_{fs}| - I_D$ $R_{DS(ON)} - I_D$ COMMON SOURCE COMMON SOURCE FORWARD TRANSFER ADMITTANCE |Yfs| (S) $V_{DS} = 20V$ Tc= −55°C DRAIN-SOURCE ON RESISTANCE RDS (ON) (Ω) $Tc = 25^{\circ}C$ 10 100 $V_{GS} = 10, 15V$ 5 3 0.5 0.3 0.5 0.1∟ 0.1 0.1 0.3 0.5 0.5 0.3 3 5 10 3 5 1 1 DRAIN CURRENT ID (A) DRAIN CURRENT ID (A)

10

