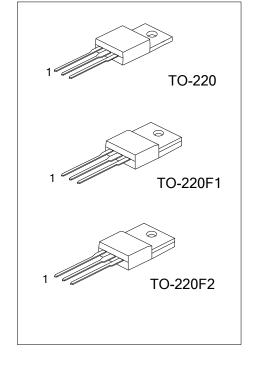


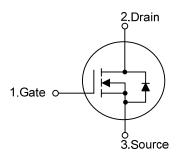
UTC UNISONIC TECHNOLOGIES CO., LTD

9N80 **Power MOSFET**

N-CHANNEL 9A, 800V **POWER MOSFET**

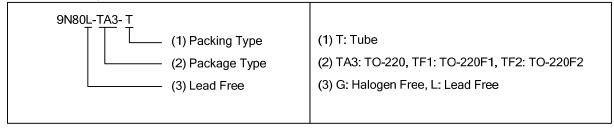

DESCRIPTION

The UTC 9N80 is an N-channel mode power MOSFET using UTC's advanced technology to provide costumers with planar stripe and DMOS technology. This technology is specialized in allowing a minimum on-state resistance and superior switching performance. It also can withstand high energy pulse in the avalanche and commutation mode.


The UTC 9N80 is universally applied in high efficiency switch mode power supply.

FEATURES

- * $R_{DS(on)} = 1.3\Omega @V_{GS} = 10 V$
- * Improved Gate Charge
- * Lower Input Capacitance
- * Lower Leakage Current: 25µA (Max.) @ VDS = 800V


SYMBOL

ORDERING INFORMATION

Ordering Number		Dackago	Pin Assignment			Daaking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
9N80L-TA3-T	9N80G-TA3-T	TO-220	G	D	S	Tube	
9N80L-TF1-T	9N80G-TF1-T	TO-220F1	G	D	S	Tube	
9N80L-TF2-T	9N80G-TF2-T	TO-220F2	G	D	S	Tube	

Pin Assignment: G: Gate D: Drain S: Source Note:

9N80 Power MOSFET

■ **ABSOLUTE MAXIMUM RATINGS**(T_C = 25°C, unless otherwise specified)

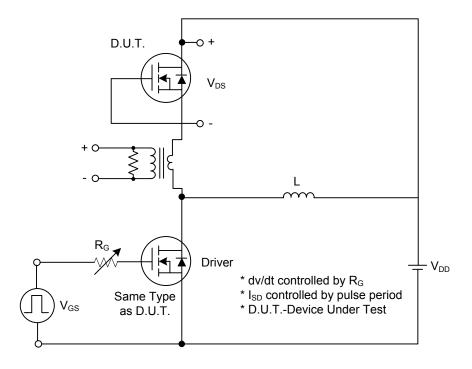
PARAMETER		SYMBOL	RATINGS	UNIT	
Drain-Source Voltage		V_{DSS}	800	V	
Gate-Source Voltage		V_{GSS}	±30	V	
Avalanche Current (Note 2)		I_{AR}	9	Α	
Drain Current (Continuous)	Continuous	I_{D}	9	Α	
	Pulsed (Note 2)	I_{DM}	36	Α	
Avalanche Energy	Single Pulsed (Note 3)	E _{AS}	900	mJ	
	Repetitive (Note 2)	E _{AR}	24	mJ	
Peak Diode Recovery dv/dt (Note 4)		dv/dt	2.0	V/ns	
Power Dissipation	TO-220		147		
	TO-220F1	P_{D}	61	W	
	TO-220F2		64		
Junction Temperature		TJ	+150	°C	
Storage Temperature		T _{STG}	-55~+150	°C	

- Note: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.
 - 2. Repetitive Rating: Pulse width limited by maximum junction temperature
 - 3. L = 21mH, I_{AS} = 9A, V_{DD} = 50V, R_G = 27 Ω , Starting T_J = 25°C
 - 4. $I_{SD} \le 9A$, di/dt $\le 180A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25^{\circ}C$

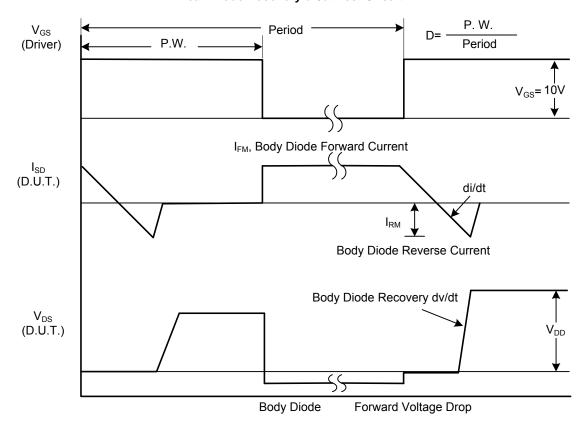
■ THERMAL DATA

PARAMETER		SYMBOL	RATINGS	UNIT	
Junction to Ambient		θ_{JA}	62.5	°C/W	
Junction to Case	TO-220		0.85		
	TO-220F1	θ_{JC}	2.04	°C/W	
	TO-220F2		1.95		

9N80

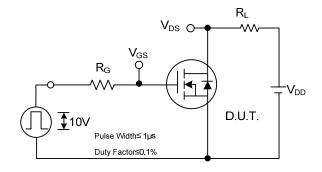

■ **ELECTRICAL CHARACTERISTICS** (T_C=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
OFF CHARACTERISTICS							
Drain-Source Breakdown Voltage	BV _{DSS}	$I_D=250\mu A, V_{GS}=0V$	800			V	
Breakdown Voltage Temperature Coefficient	$\triangle BV_{DSS}/\triangle T_{J}$	I _D =250μA		0.96		V/°C	
Drain-Source Leakage Current	I _{DSS}	V _{DS} =800V			25	μA	
Forward		V _{GS} =+30V			+100	nA	
Gate- Source Leakage Current Reverse	I _{GSS}	V _{GS} =-30V			-100	nA	
ON CHARACTERISTICS							
Gate Threshold Voltage	$V_{GS(TH)}$	V_{DS} =5V, I_D =250 μ A			5	V	
Static Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =4.5A		1.05	1.3	Ω	
Forward Transconductance	g fs	V _{DS} =50V, I _D =4.5A (Note 1)		5.54		S	
DYNAMIC PARAMETERS							
Input Capacitance	C _{ISS}			2020	2600	pF	
Output Capacitance	Coss	V_{GS} =0V, V_{DS} =25V, f=1.0MHz,		195	230	pF	
Reverse Transfer Capacitance	C_{RSS}			82	95	pF	
SWITCHING PARAMETERS							
Total Gate Charge	Q_G	V _{GS} =10V, V _{DS} =640V, I _D =9A,		93	120	nC	
Gate to Source Charge	Q_GS	(Note 1, 2)		14.3		nC	
Gate to Drain Charge	Q_GD	(Note 1, 2)		42.1		nC	
Turn-ON Delay Time	t _{D(ON)}	V_{DD} =400V, I_{D} =9 A, R_{G} =16Ω, (Note 1, 2)		25	60	ns	
Rise Time	t _R			37	85	ns	
Turn-OFF Delay Time	t _{D(OFF)}			113	235	ns	
Fall-Time	t _F			42	95	ns	
SOURCE- DRAIN DIODE RATINGS AND CH	ARACTERISTI	CS					
Maximum Body-Diode Continuous Current	Is	Integral reverse an diade in the			9	Α	
Maximum Pulsed Drain-Source Diode		Integral reverse pn-diode in the mosfet			36	۸	
Forward Current (Note 1)					30	Α	
Drain-Source Diode Forward Voltage (Note 1)	V_{SD}	I _S =9A, V _{GS} =0V, T _J =25°C			1.4	V	
Reverse Recovery Time	t _{rr}	T _J =25°C, I _F =9A,		560		ns	
Reverse Recovery Charge	Q_{RR}	dI _F /dt=100A/μs, (Note 1)		8.4		μC	


Note: 1. Pulse Test: Pulse width ≤ 250µs, Duty cycle ≤ 2%

^{2.} Essentially independent of operating temperature

■ TEST CIRCUITS AND WAVEFORMS

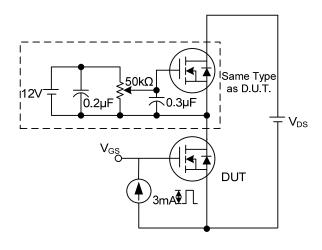


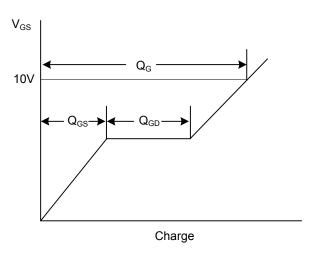
Peak Diode Recovery dv/dt Test Circuit

Peak Diode Recovery dv/dt Waveforms

■ TEST CIRCUITS AND WAVEFORMS (Cont.)

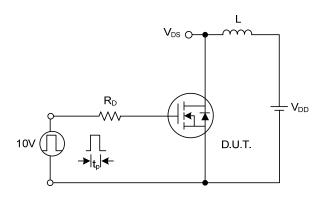
V_{DS} 90%

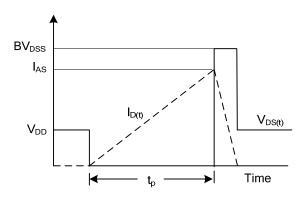

V_{GS} 10%


t_{D(ON)}

t_R → t_R → t_F →

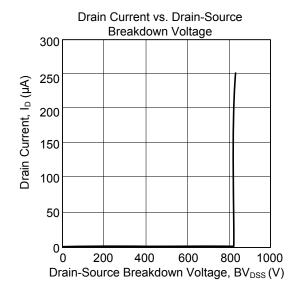
Switching Test Circuit

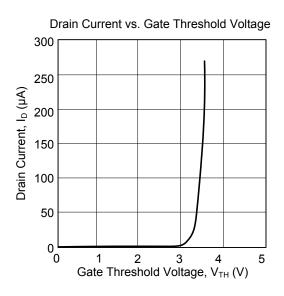

Switching Waveforms

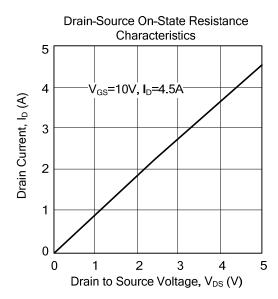


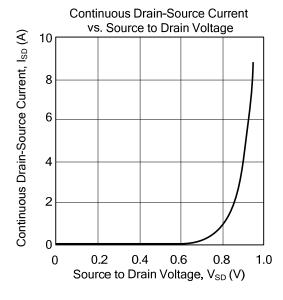
Gate Charge Test Circuit

Gate Charge Waveform






Unclamped Inductive Switching Test Circuit


Unclamped Inductive Switching Waveforms

■ TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.