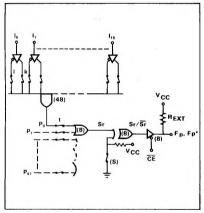
82\$100 (T.S.)/82\$101 (O.C.)

82S100-I,N • 82S101-I,N


DESCRIPTION

The 82S100 (tri-state outputs) and the 82S101 (open collector outputs) are Bipolar Programmable Logic Arrays, containing 48 product terms (AND terms), and 8 sum terms (OR terms). Each OR term controls an output function which can be programmed either true active-high (Fp), or true active-low (F). The true state of each output function is activated by any logical combination of 16-input variables, or their complements, up to 48 terms. Both devices are field programmable, which means that custom patterns are immediately available by following the fusing procedure outlined in this data sheet.

The 82S100 and 82S101 are fully TTL compatible, and include chip-enable control for expansion of input variables, and output inhibit. They feature either open collector or tri-state outputs for ease of expansion of product terms and application in busorganized systems.

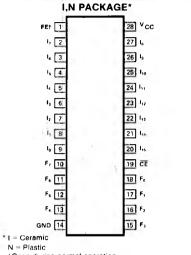
Both devices are available in commercial and military temperature ranges. For the commercial temperature range (0°C to +75°C) specify N82S100/101,I or N, and for the military temperature range (-55°C to +125°C) specify S82S100/101,I.

FPLA EQUIVALENT LOGIC PATH

LOGIC FUNCTION

Typical Product Term: $P_0 = I_0 \cdot I_1 \cdot I_2 \cdot I_5 \cdot I_{13}$

Typical Output Functions: $F_0 = (\overline{CE}) + (\underline{P}_0 + \underline{P}_1 + \underline{P}_2)$ @ S = Closed $F_0^* = (\overline{CE}) + (\overline{P}_0 + \overline{P}_1 + \overline{P}_2)$ @ S = Open


NOTE

For each of the 8 outputs, either the function Fp (active-high) or Fp (active low) is available, but not both. The required function polarity is programmed via link (S).

APPLICATIONS

- CRT display systems
- Random logic
- Code conversion
 Peripheral controlle
- Peripheral controllers
 Function generators
- Look-up and decision tables
- Microprogramming
- Address mapping
- Character generators
- Sequential controllers
- Data security encoders
- Fault detectors
- Frequency synthesizers

PIN CONFIGURATION

†Open during normal operation

THERMAL TABLE

TEMPERATURE	MILI- TARY	COM- MER- CIAL
Maximum		
junction	175°C	150°C
Maximum		
ambient	125° C	75°C
Allowable thermal		
rise ambient		
to junction	50° C	75° C

LOGIC DIAGRAM

TRUTH RATINGS

Pn

X 1

1 0

0 0

x l o

MODE

Disabled

(82\$101)

Disabled

(82S100)

Read

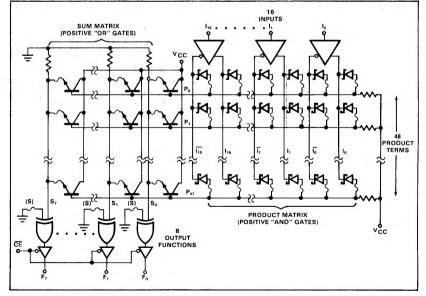
CE Sr ? f(Pn)

X

Yes

No

Fp Fp


1 1

1 0

0 1

0 1

Hi-ZHi-Z

signetics

82\$100 (T.S.)/82\$101 (0.C.)

82S100-I,N • 82S101-I,N

ABSOLUTE MAXIMUM RATINGS1

		AETED	RAT	ring 🚽	UNIT	
			Min	Min Max		
۷ ۷ ۱ _۱ ۱ ۱ _۲	CC ΊΝ Όυτ Ν Ουτ	Supply voltage Input voltage Output voltage Input currents Output currents Temperature range Operating	-30	+7 +5.5 +5.5 +30 +100	Vdc Vdc mA mA °C	
т	STG	N82S100/101 S82S100/101 Storage	0 55 -65	+75 +125 +150		

DC ELECTRICAL CHARACTERISTICS N82S100/101: $0^{\circ} \le T_A \le +75^{\circ}$ C, $4.75V \le V_{CC} \le 5.25V$

 $S82S100/101: -55^{\circ}C \le T_{A} \le +125^{\circ}C, 4.5V \le V_{CC} \le 5.5V$

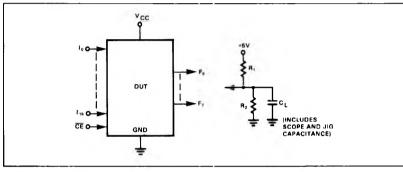
			N82	2\$100/	101	S82	S100/	101	UNIT
	PARAMETER	TEST CONDITIONS	Min	Тур	Max	Min	Тур	Max	
Vih Vil Vic	Input voltage ³ High Low Clamp ^{3,4}	$V_{CC} = Max$ $V_{CC} = Min$ $V_{CC} = Min$, $I_{IN} = -18mA$	2	-0.8	0.85 -1.2	2.	-0.8	0.8 -12	V
Vон Vol	Output voltage High (82S100) ^{3,6} Low ^{3,6}	V _{CC} = Min I _{OL} = 9.6mA I _{OH} = -2mA	2.4	0.35	0.45	2.4	0.35	0.50	V
hн ht	Input current High Low	$V_{IN} = 5.5V$ $V_{IN} = 0.45V$		<1 -10	25 -100		<1 -10	50 -150	μA
IOLK IO(OFF) IOS	Output current Leakage ⁷ Hi-Z state (82S100) ⁷ Short circuit (82S100) ^{4,8}	$V_{CC} = Max \\ V_{OUT} = 5.5V \\ V_{OUT} = 5.5V \\ V_{OUT} = 0.45V \\ V_{OUT} = 0V$	-20	1 1 -1	40 40 -40 -70	-15	1 1 -1	60 60 -60 -85	μΑ μΑ mA
lcc	V _{CC} supply current ⁹	V _{CC} = Max		120	170		120	180	mA
C _{IN} C _{OUT}	Capacitance ⁷ Input Output	$V_{CC} = 5.0V$ $V_{IN} = 2.0V$ $V_{OUT} = 2.0V$		8 17			8 17		pF

AC ELECTRICAL CHARACTERISTICS $R_1 = 470\Omega$, $R_2 = 1k\Omega$, $C_L = 30pF$

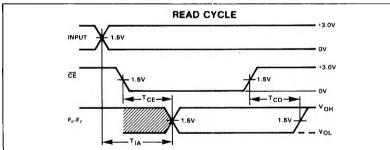
 $\begin{aligned} &\mathsf{R}_1 = 47011, \, \mathsf{R}_2 = 1811, \, \mathsf{CL} = 30\mathsf{pr} \\ &\mathsf{N82S100/101:} \ 0^\circ\mathsf{C} \leq \mathsf{T}_\mathsf{A} \leq +75^\circ\mathsf{C}, \, 4.75\mathsf{V} \leq \mathsf{V}_\mathsf{CC} \leq 5.25\mathsf{V} \\ &\mathsf{S82S100/101:} \ -55^\circ\mathsf{C} \leq \mathsf{T}_\mathsf{A} \leq +125^\circ\mathsf{C}, \, 4.5\mathsf{V} \leq \mathsf{V}_\mathsf{CC} \leq 5.5\mathsf{V} \end{aligned}$

PARAMETER		PARAMETER TO FROM		N82S100/101			S82S100/101			
				Min Typ ²		Max	Min	Typ ²	Max	
TIA TCE	Access time Input Chip enable	Output Input Output Chip enable		35 15		50 30		35 15	80 40	ns
T _{CD}	Disable time Chip disable	Output	Chip enable		15	30		15	40	ns

NOTES on following page.


82S100 (T.S.)/82S101 (0.C.)

82S100-I,N • 82S101-I,N


NOTES

- Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device of these or any other condition above those indicated in the operation of the device specifications is not implied.
- 2. All typical values are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.
- 3. All voltage values are with respect to network ground terminal.
- 4. Test one at the time.
- 5. Measured with VIL applied to CE and a logic high stored.
- 6. Measured with a programmed logic condition for which the output test is at a low logic level. Output
- sink current is applied thru a resistor to Vcc.
- 7. Measured with: ViH applied to CE.
- 8. Duration of short circuit should not exceed 1 second.
- 9. Icc is measured with the chip enable input grounded, all other inputs at 4.5V and the outputs open.

TEST LOAD CIRCUIT

TIMING DIAGRAM

TIMING DEFINITIONS

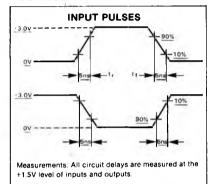
- TCE Delay between beginning of Chip Enable low (with Address valid) and when Data Output becomes valid.
- TcD Delay between when Chip Enable becomes high and Data Output is in off state (Hi-Z or high).
- T_{IA} Delay between beginning of valid Input (with Chip Enable low) and when Data Output becomes valid.

VIRGIN DEVICE

The 82S100/101 are shipped in an unprogrammed state, characterized by:

- 1. All internal Ni-Cr links are intact.
- Each product term (P-term) contains both true and complement values of every input variable I_m (P-terms always logically "false").

- 3. The "OR" Matrix contains all 48-P-terms.
- 4. The polarity of each output is set to active high (Fp function).
- 5. All outputs are at a low logic level.


RECOMMENDED PROGRAMMING PROCEDURE

To program each of 8 Boolean logic functions of 16 true or complement variables, including up to 48 P-terms, follow the Program/Verify procedures for the "AND" matrix, "OR" matrix, and output polarity outlined below. To maximize recovery from programming errors, leave all links in unused device areas intact.

SET-UP

Terminate all device outputs with a 10K resistor to +5V. Set GND (pin 14) to 0V.

VOLTAGE WAVEFORM

Output Polarity

PROGRAM ACTIVE LOW (F[#] FUNCTION)

Program output polarity before programing "AND" matrix and "OR" matrix. Program 1 output at the time. (S) links of unused outputs are not required to be fused.

- 1. Set FE (pin 1) to VFEL.
- 2. Set Vcc (pin 28) to VccL.
- 3. Set \overrightarrow{CE} (pin 19), and I₀ through I₁₅ to VIH.
- Apply V_{OPH} to the appropriate output, and remove after a period t_p.
- 5. Repeat step 4 to program other outputs.

VERIFY OUTPUT POLARITY

- Set FE (pin 1) to V_{FEL}; set V_{CC} (pin 28) to V_{CCS}.
- Enable the chip by setting CE (pin 19) to VIL.
- 3. Address a non-existent P-term by applying V_{IH} to all inputs I₀ through I₁₅.
- 4. Verify output polarity by sensing the logic state of outputs F₀ through F₇. All outputs at a high logic level are programmed active low (F_p function), while all outputs at a low logic level are programmed active high (F_p function).
- 5. Return Vcc to VccP or VccL.

82\$100 (T.S.)/82\$101 (O.C.)

82S100-I,N • 82S101-I,N

"AND" Matrix

PROGRAM INPUT VARIABLE

Program one input at the time and one Pterm at the time. All input variable links of unused P-terms are not required to be fused. However, unused input variables must be programmed as Don't Care for all programmed P-terms.

- 1. Set FE (pin 1) to V_{FEL}, and V_{CC} (pin 28) to V_{CCP}.
- 2. Disable all device outputs by setting CE (pin 19) to V_{IH}.
- Disable all input variables by applying Vix to inputs I₀ through I₁₅.
- Address the P-term to be programmed (No. 0 through 47) by forcing the corresponding binary code on outputs F₀ through F₅ with F₀ as LSB. Use standard TTL logic levels V_{OHF} and V_{OLF}.
- 5a. If the P-term contains neither I_0 nor $\overline{I_0}$ (input is a Don't Care), fuse both I_0 and $\overline{I_0}$ links by executing both steps 5b and 5c, before continuing with step 7.
- 5 c . If the P-term contains $\overline{I_0}$, set to fuse the I_0 link by lowering the input voltage at I_0 from V_{IX} to V_{IL} . Execute step 6.
- 6a. After t_D delay, raise FE (pin 1) from V_{FEL} to V_{FEH}.
- 6 b. After t_D delay, pulse the CE input from VIH to VIX for a period t_p.
- 6 c . After t_D delay, return FE input to V_{FEL}.
- 7. Disable programmed input by returning I₀ to V_{IX}.
- 8. Repeat steps 5 through 7 for all other input variables.
- 9. Repeat steps 4 through 8 for all other Pterms.
- 10. Remove V_{IX} from all input variables.

VERIFY INPUT VARIABLE

- 1. Set FE (pin 1) to V_{FEL}; set V_{CC} (pin 28) to V_{CCP}.
- 2. Enable F_7 output by setting \overline{CE} to V_{IX} .
- 3. Disable all input variables by applying V_{IX} to inputs I_0 through $I_{15}. \label{eq:VIX}$
- Address the P-term to be verified (No. 0 through 47) by forcing the corresponding binary code on outputs F₀ through F₅.

- 5. Interrogate input variable Io as follows:
 - A. Lower the input voltage at I_0 from V_{IX} to V_{IH}, and sense the logic state of output F₇.
 - B. Lower the input voltage at I_0 from V_{IH} to V_{IL} , and sense the logic state output F7.

The state of I_0 contained in the P-term is determined in accordance with the following truth table:

I ₀	F 7	INPUT VARIABLE STATE CONTAINED IN P-TERM
0	1 0	īo
0 1	0 1	١ _٥
0	1 1	Don't Care
0	0 0	(I ₀), (T ₀)

Note that 2 tests are required to uniquely determine the state of the input variable contained in the P-term.

- 6. Disable verified input by returning I₀ to V_{IX}.
- 7. Repeat steps 5 and 6 for all other input variables.
- Repeat steps 4 through 7 for all other Pterms.
- 9. Remove VIX from all input variables.

"OR" MATRIX

PROGRAM PRODUCT TERM

Program one output at the time for one Pterm at the time. All P_n links in the "OR" matrix corresponding to unused outputs and unused P-terms are not required to be fused.

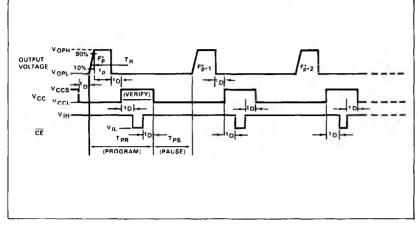
- 1. Set FE (pin 1) to VFEL.
- Disable the chip by setting CE (pin 19) to V_{IH}.
- After t_D delay, set V_{CC} (pin 28) to V_{CCS}, and inputs I₆ through I₁₅ to V_{IH}, V_{IL}, or V_{IX}.
- Address the P-term to be programmed (No. 0 through 47) by applying the corresponding binary code to input

variables I_0 through I_{5_1} with I_0 as LSB. If the P-term is contained in output

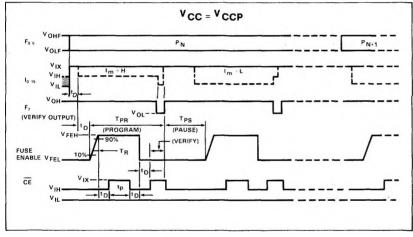
- 5a. If the P-term is contained in output function F_0 ($F_0 = 1$ or $F_0 = 0$), got to step 6, (fusing cycle not required).
- 5b. If the P-term is not contained in output function F_0 ($F_0 = 0$ or $F_0^* = 1$), set to fuse the P_n link by forcing output F_0 to VOPF.
- 6a. After t_D delay, raise FE (pin 1) from VFEL to VFEH.
- 6b. After t_D delay, pulse the \overline{CE} input from V_{IH} to V_{IX} for a period t_p.
- 6c. After to delay, return FE input to VFEL.
- After t_D delay, remove V_{OPF} from output F₀.
- Repeat steps 5 and 6 for all other output functions.
- Repeat steps 4 through 7 for all other P-terms.
- 9. Remove Vccs from Vcc.

VERIFY PRODUCT TERM

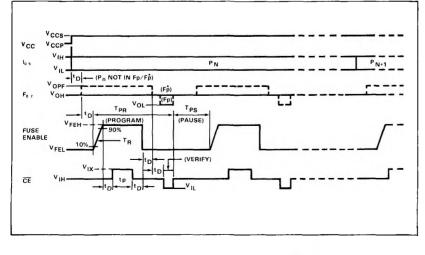
- 1. Set FE (pin 1) to VFEL.
- 2. Disable the chip by setting CE (pin 19) to VIH.
- 3. After t_D delay, set V_{CC} (pin 28) to V_{CCS} , and inputs I₀ through I₁₅ to V_{IH}, V_{IL}, or V_{IX}.
- Address the P-term to be verified (No. 0 through 47) by applying the corresponding binary code to input variables I₀ through I₅.
- 5. After t_D delay, enable the chip by setting \overline{CE} (pin 19) to V_{IL}.
- 6. To determine the status of the P_n link in the "OR" matrix for each output function F_p or F_p^* , sense the state of outputs F_0 through F_7 . The status of the link is given by the following truth table:


ουτι	νυτ	
Active High (Fp)	Active Low (Fp)	P-TERM LINK
0	1 0	Fused Present

- Repeat steps 4 through 6 for all other Pterms.
- 8. Remove Vccs from Vcc.


82\$100 (T.S.)/82\$101 (0.C.)

82S100-I,N • 82S101-I,N


OUTPUT POLARITY PROGRAM-VERIFY SEQUENCE (TYPICAL)

"OR" MATRIX PROGRAM-VERIFY SEQUENCE (TYPICAL)

82\$100 (T.S.)/82\$101 (O.C.)

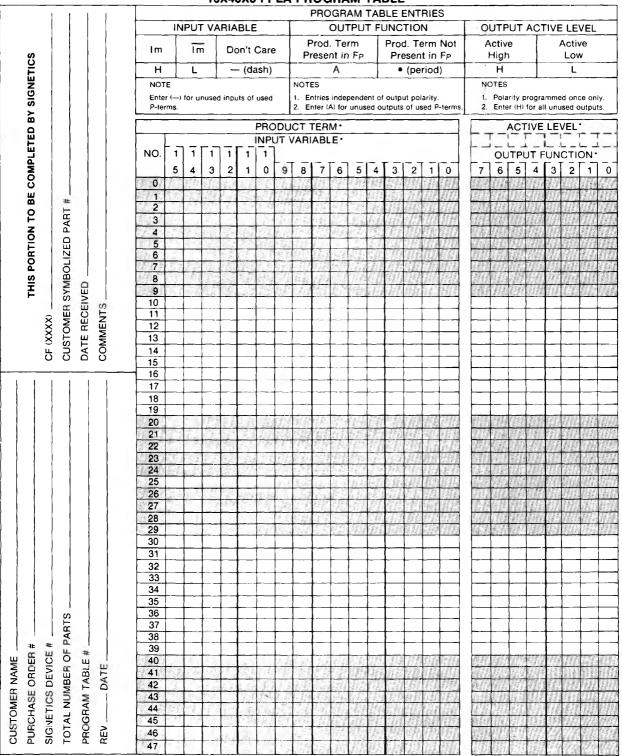
82S100-I.N • 82S101-I,N

PROGRAMMING SYSTEM SPECIFICATIONS¹ (T_A = +25°C)

	PARAMETER	TEST CONDITIONS		UNIT		
			Min	Тур	Max	UNI
Vccs	V _{CC} supply (program/verify "OR", verify output polarity) ²	I _{CCS} = 550mA, min, Transient or steady state	8.5	8.75	9.0	v
VCCL	V _{CC} supply (program output polarity)		0	0.4	0.8	v
lccs	I _{CC} limit (program "OR")	$V_{CCS} = +8.75 \pm .25V$	550		1,000	m A
	Output voltage			-		v
Vорн	Program output polarity ³	$I_{OPH} = 300 \pm 25 mA$	16.0	17.0	18.0	{
VOPL	Idle	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0	0.4	0.8	
Іорн	Output current limit (Program output polarity)	$V_{OPH} = +17 \pm 1V$	275	300	325	mA
*	Input voltage	0				v
VIH	High		2.4		5.5	1
VIL	Low		0	0.4	0.8	
	Input current	· · · · · · · · · · · · · · · · · · ·				μA
hн	High	$V_{1H} = +5.5V$	1		50	
hL	Low	V _{IL} = 0V			-500	
	Forced output voltage					v
VOHF	High		2.4		5.5	
VOLF	Low		, 0	0.4	0.8	
IOHE	Output current High				100	
OLF	Low	$V_{OHF} = +5.5V$ $V_{OLF} = 0V$			100	μA mA
Vix	CE program enable level		9.5	10	10.5	V
Jix1	Input variables current	$V_{IX} = +10V$	0.0		2.5	m A
lix2	CE input current	$V_{1X} = +10V$			5.0	mA
VFEH	FE supply (program) ³	$I_{FEH} = 300 \pm 25 mA,$	16.0	17.0	18.0	v
VFEL	FE supply (idle)	Transient or steady state I _{FEL} = -1mA, max	1.25	1.5	1.75	v
JFEH	FE supply current limit	$V_{FEH} = +17 \pm 1V$	275	300	325	
	V _{CC} supply (program/verify "AND")	$V_{FER} = 172 \pm 10$ ICCP = 550mA, min,		5.0		mA V
VCCP	VCC supply (program/verity AND)	Transient or steady state	4.75	5.0	5.25	v
ICCP	Icc limit (program "AND")	$V_{CCP} = +5.0 \pm .25V$	550		1,000	mA
VOPF	Forced output (program)		9.5	10	10.5	v
IOPF	Output current (program)				10	mA
TR	Output pulse rise time		10		50	μs
tp	CE programming pulse width		0.3	0.4	0.5	ms
to	Pulse sequence delay		10		}	μs
TPR	Programming time			0.6		ms
	 Programming duty cycle 				50	%
T _{PR} + T _F FL	PS Fusing attempts per link				2	сус
Vs	Verify threshold ⁴		1.4	1.5	1.6	v

NOTES

1. These are specifications which a Programming System must satisy in order to be qualified by Signetics.


2. Bypass Vcc to GND with a 0.01µf capacitor to reduce voltage spikes.

- Care should be taken to ensure that the voltage is maintained during the entire fusing cycle. The
 recommended supply is a constant current source clamped at the specified voltage limit.
- 4. Vs is the sensing threshold of the FPLA output voltage for a programmed link. It normally constitutes the reference voltage applied to a comparator circuit to verify a successful fusing attempt.
- These are new limits resulting from device improvements, and which supersede, but do not obsolete the performance requirements of previously manufactured programming equipment.

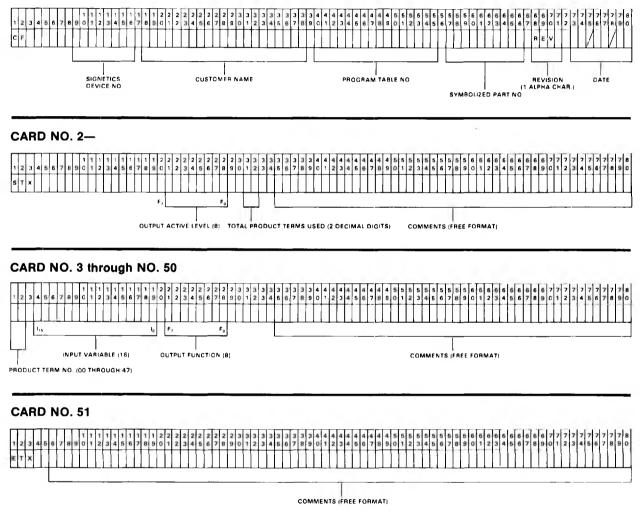
825100 (T.S.)/825101 (O.C.)

82S100-I,N • 82S101-I,N

16X48X8 FPLA PROGRAM TABLE

Input and Output fields of unused P-terms can be left blank. Unused inputs and outputs are FPLA terminals left floating

82\$100 (T.S.)/82\$101 (0.C.)


82S100-I.N • 82S101-I.N

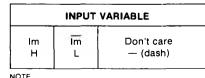
PUNCHED CARD CODING FORMAT

The FPLA Program Table can be supplied directly to Signetics in punched card form,

using standard 80-column IBM cards. For each FPLA Program Table, the customer should prepare in input card deck in accordance with the following format. Product Term cards 3 through 50 can be in any order. Not all 48 Product Terms need to be present. Unused Product Terms require no entry cards, and will be skipped during the actual programming sequence:

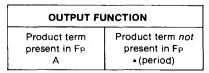
CARD NO.1—Free format within designated fields.

Output Active Level entries are determined in accordance with the following table:


Active high	Active low
H	L

NOTES

1. Polarity programmed once only.


2. Enter (H) for all unused outputs.

Input Variable entries are determined in accordance with the following table:

Enter (-) for lunused inputs of used P-terms.

Output Function entries are determined in accordance with the following table:

NOTES

1. Entries independent of output polarity.

2. Enter (A) for unused outputs of used P-terms.

82S100-I,N • 82S101-I,N

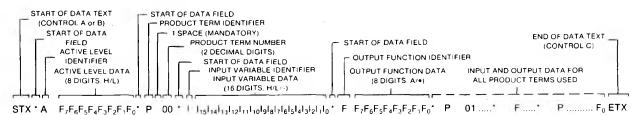
TWX TAPE CODING FORMAT

The FPLA Program Table can be sent to Signetics in ASCII code format via airmail using any type of 8-level tape (paper, mylar, fanfold, etc.), or via TWX: just dial (910) 3399283, tell the operator to turn the paper puncher on, and acknowledge. At the end of transmission instruct the operator to send tape to Signetics Order Entry. quentially assembled on a continuous tape as follows, however limit tape length to a roll of 1.75 inch inside diameter, and 4.25 inch outside diameter:

82S100 (T.S.)/82S101 (0.C.

A number of Program Tables can be se-

	24" LEADER (C/R)	(CTRL)R	MAIN HEADING	25 (C/R) MIN.	SUB HEADING (1)	25 RUBOUTS MIN.	PROGRAM TABLE DATA (1)	25 (C/R) MIN	SUB HEADING (N)	25 RUBOUTS MIN	PROGRAM TABLE	7
--	------------------------	---------	-------------------	---------------------	-----------------------	-----------------------	---------------------------	--------------------	-----------------------	----------------------	---------------	---


A. The MAIN HEADING at the beginning of tape includes the following information, with each entry preceded by a (\$) character, whether used or not:

1. Customer Name	4. Purchase Order No
2. Customer TWX No.	5. Number of Program Tables
3. Date	6. Total Number of Parts

B. Each SUB HEADING should contain specific information pertinent to each Program Table as follows, with each entry preceded by a (\$) character, whether used or not:

1. Signetics Device No.	4. Date
2. Program Table No.	5. Customer Symbolized Part No
3. Revision	6. Number of Parts

C. Program Table data blocks are initiated with an STX character, and terminated with an ETX character. The body of the data consists of Output Active Level, Product Term, and Output Function information separated by appropriate identifiers in accordance with the following format:

10.60

Entries for the 3 Data Fields are determined in accordance with the following Table:

	INPUT	VARIABLE	OUTPUT ACTIVE LEVEL			
ц Т П	lm L	Don't care — (dash)	Product term present in Fp A	Product term not present in Fp • (period)	Active high H	Active low L

NOTE

Enter (--) for unused inputs of used P-terms.

NOTES

Entries independent of output polarity.
 Enter (A) for unused outputs of used P-terms.

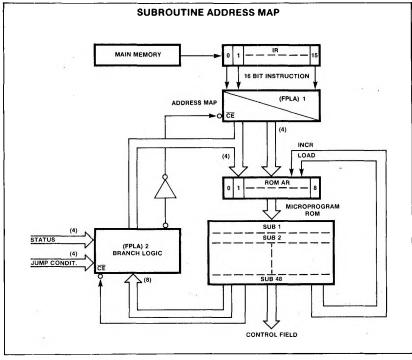
NOTES

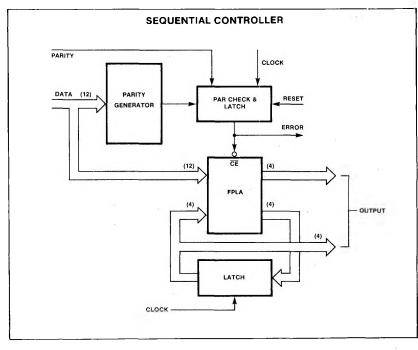
1. Polarity programmed once only

2. Enter (H) for all unused outputs

Although the Product Term data are shown entered in sequence, this is not necessary. It is possible to input only one Product Term, if desired. Unused Product Terms require no entry. ETX signalling end of Program Table may occur with less than the maximum number of Product Terms entered.

NOTES


- Corrections to any entry can be made by backspace and rubout. However, limit consecutive rubouts to less than 25.
- 2. P-Terms can be re-entered any number of times. The last entry for a particular P-Term will be interpreted as valid data.
- 3. Any P-Term can be deleted entirely by inserting the character (E) immediately following the P-Term number to be deleted, i.e., *P 25E deletes P-Term 25.
- 4. To facilitate an orderly Teletype print out, carriage returns, line feeds, spaces, rubouts etc. may be interspersed between data groups, but only preceding an asterisk (*).
- Comments are allowed between data fields, provided that an asterisk (*) is not used in any Heading or Comment entry.



82\$100 (T.S.)/82\$101 (O.C.)

82S100-I,N • 82S101-I,N

TYPICAL APPLICATIONS

